winglian's picture
Update README.md (#2)
5650eb8 verified
metadata
base_model: winglian/m12b-20240721-test010
tags:
  - generated_from_trainer
model-index:
  - name: outputs/simpo-out
    results: []
license: apache-2.0

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: winglian/m12b-20240721-test010
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

chat_template: chatml
rl: simpo
rl_beta: 2.5
cpo_alpha: 0.05
simpo_gamma: 0.1
datasets:
  - path: princeton-nlp/gemma2-ultrafeedback-armorm
    type: chat_template.default
    chat_template: chatml
    field_messages: chosen
    field_chosen: chosen
    field_rejected: rejected
    message_field_role: role
    message_field_content: content
    roles:
      system:
        - system
      user:
        - user
      assistant:
        - assistant

dataset_prepared_path:
val_set_size: 0.0
output_dir: ./outputs/simpo-out

save_safetensors: true
save_only_model: true  # fsdp seems to crap out saving the optimizer

sequence_len: 8192
sample_packing: false
pad_to_sequence_len: true

adapter: 
lora_model_dir:
lora_r: 256
lora_alpha: 256
lora_dropout: 0.1
lora_target_linear: true
lora_fan_in_fan_out:
  # peft_use_rslora: true

wandb_project: romulus-12b
wandb_entity: oaaic
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 5.0e-7

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:

warmup_steps: 25
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero3_bf16_cpuoffload_params.json
weight_decay: 0.0
fsdp:
fsdp_config:

Visualize in Weights & Biases

outputs/simpo-out

This model is a fine-tuned version of winglian/m12b-20240721-test010 on an unknown dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 25
  • training_steps: 466

Training results

Framework versions

  • Transformers 4.43.1
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1