Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: awilliamson/horses-pp
    type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0
output_dir: ./no-inputs

sequence_len: 8192
sample_packing: false
pad_to_sequence_len: true

wandb_project: derby
wandb_entity: willfulbytes
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 20
evals_per_epoch:
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_offload_params: true
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
special_tokens:
  pad_token: <|end_of_text|>
tokens:
  - <|start_St|>
  - <|end_St|>
  - <|start_1/4|>
  - <|end_1/4|>
  - <|start_1/2|>
  - <|end_1/2|>
  - <|start_3/8|>
  - <|end_3/8|>
  - <|start_3/4|>
  - <|end_4/4|>
  - <|start_Str|>
  - <|end_Str|>
  - <|start_Fin|>
  - <|end_Fin|>
  - PP1
  - PP2
  - PP3
  - PP4
  - PP5
  - PP6
  - PP7
  - PP8
  - PP9
  - PP10
  - PP11
  - PP12
  - PP13
  - PP14
  - PP15
  - PP16
  - PP17
  - PP18
  - PP19
  - PP20

no-inputs

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 2
  • total_eval_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 4

Training results

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.2.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
4
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for awilliamson/exactapp

Finetuned
(350)
this model