metadata
base_model: sentence-transformers/paraphrase-mpnet-base-v2
datasets:
- SetFit/SentEval-CR
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
you can take pic of your friends and the picture will pop up when they
call .
- text: the speakerphone , the radio , all features work perfectly .
- text: >-
a ) the picture quality ( color and sharpness of focusing ) are so great ,
it completely eliminated my doubt about digital imaging -- - how could one
eat rice one grain at a time : - ) )
- text: >-
so far the dvd works so i hope it does n 't break down like the reviews i
've read .
- text: >-
i have a couple hundred contacts and the menu loads within a few seconds ,
no big deal .
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: SetFit/SentEval-CR
type: SetFit/SentEval-CR
split: test
metrics:
- type: accuracy
value: 0.8698539176626826
name: Accuracy
SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model trained on the SetFit/SentEval-CR dataset that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
- Training Dataset: SetFit/SentEval-CR
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
1 |
|
0 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.8699 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("ardi555/setfit-SentEval-classification")
# Run inference
preds = model("the speakerphone , the radio , all features work perfectly .")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 4 | 18.0625 | 44 |
Label | Training Sample Count |
---|---|
0 | 7 |
1 | 9 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.025 | 1 | 0.2289 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.1.0
- Transformers: 4.37.2
- PyTorch: 2.4.0+cu121
- Datasets: 3.0.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}