whisper-large-hy-2 / README.md
arampacha's picture
Update README.md
3d87b80
|
raw
history blame
1.79 kB
metadata
language:
  - hy
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
  - google/fleurs
model-index:
  - name: whisper-base-hy
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: hy-AM
          split: test
          args: hy-AM
        metrics:
          - name: Wer
            type: wer
            value: 19.986894

whisper-base-hy

This model is a fine-tuned version of openai/whisper-large-v2 on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.1806
  • eval_wer: 19.9869
  • eval_runtime: 1358.6954
  • eval_samples_per_second: 0.292
  • eval_steps_per_second: 0.074
  • epoch: 13.33
  • step: 3000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 400
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2