openhermes-mistral-dpo-gptq
This model is a fine-tuned version of TheBloke/OpenHermes-2-Mistral-7B-GPTQ on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4545
- Rewards/chosen: -0.0587
- Rewards/rejected: -1.0907
- Rewards/accuracies: 0.875
- Rewards/margins: 1.0320
- Logps/rejected: -312.2487
- Logps/chosen: -273.6681
- Logits/rejected: -1.8614
- Logits/chosen: -1.7936
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- training_steps: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.6989 | 0.01 | 10 | 0.6566 | -0.0830 | -0.1482 | 0.75 | 0.0652 | -302.8232 | -273.9107 | -1.8738 | -1.7954 |
0.6578 | 0.01 | 20 | 0.5787 | 0.0468 | -0.2201 | 0.8125 | 0.2669 | -303.5421 | -272.6130 | -1.8707 | -1.7965 |
0.715 | 0.01 | 30 | 0.5021 | 0.2256 | -0.3134 | 0.8125 | 0.5391 | -304.4756 | -270.8246 | -1.8729 | -1.8014 |
0.6847 | 0.02 | 40 | 0.4673 | 0.2097 | -0.6320 | 0.875 | 0.8417 | -307.6610 | -270.9843 | -1.8682 | -1.7996 |
0.7869 | 0.03 | 50 | 0.4545 | -0.0587 | -1.0907 | 0.875 | 1.0320 | -312.2487 | -273.6681 | -1.8614 | -1.7936 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu117
- Datasets 2.15.0
- Tokenizers 0.15.0
Model tree for anugoel890/openhermes-mistral-dpo-gptq
Base model
mistralai/Mistral-7B-v0.1
Finetuned
teknium/OpenHermes-2-Mistral-7B
Quantized
TheBloke/OpenHermes-2-Mistral-7B-GPTQ