|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
class WealthSignalNerveNet(nn.Module): |
|
def __init__(self, input_size=1, hidden_size=64, output_size=1): |
|
super(WealthSignalNerveNet, self).__init__() |
|
|
|
self.fc1 = nn.Linear(input_size, hidden_size) |
|
self.fc2 = nn.Linear(hidden_size, hidden_size) |
|
self.fc3 = nn.Linear(hidden_size, output_size) |
|
self.relu = nn.ReLU() |
|
|
|
def forward(self, x): |
|
x = self.relu(self.fc1(x)) |
|
x = self.relu(self.fc2(x)) |
|
x = self.fc3(x) |
|
return x |
|
|
|
|
|
def generate_wealth_signal(iterations=100): |
|
time = np.linspace(0, 10, iterations) |
|
wealth_signal = np.sin(2 * np.pi * time) |
|
return wealth_signal |
|
|
|
|
|
def transmit_wealth_signal(wealth_signal, model): |
|
transmitted_signals = [] |
|
for wealth in wealth_signal: |
|
wealth_tensor = torch.tensor([wealth], dtype=torch.float32) |
|
transmitted_signal = model(wealth_tensor) |
|
transmitted_signals.append(transmitted_signal.item()) |
|
return transmitted_signals |
|
|
|
|
|
def plot_wealth_signal(original_signal, transmitted_signal): |
|
plt.figure(figsize=(10, 5)) |
|
plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--') |
|
plt.plot(transmitted_signal, label="Transmitted Wealth Signal", color='b') |
|
plt.title("Wealth Signal Transmission Through Nerves") |
|
plt.xlabel("Iterations (Time)") |
|
plt.ylabel("Signal Amplitude") |
|
plt.legend() |
|
plt.grid(True) |
|
plt.show() |
|
|
|
|
|
model = WealthSignalNerveNet() |
|
|
|
|
|
iterations = 100 |
|
wealth_signal = generate_wealth_signal(iterations) |
|
|
|
|
|
transmitted_signal = transmit_wealth_signal(wealth_signal, model) |
|
|
|
|
|
plot_wealth_signal(wealth_signal, transmitted_signal) |
|
|
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
class WealthSignalStorageNet(nn.Module): |
|
def __init__(self, input_size=1, hidden_size=64, output_size=1): |
|
super(WealthSignalStorageNet, self).__init__() |
|
|
|
self.fc1 = nn.Linear(input_size, hidden_size) |
|
self.fc2 = nn.Linear(hidden_size, hidden_size) |
|
self.fc3 = nn.Linear(hidden_size, output_size) |
|
self.fc4 = nn.Linear(output_size, output_size) |
|
self.relu = nn.ReLU() |
|
self.sigmoid = nn.Sigmoid() |
|
|
|
def forward(self, x): |
|
x = self.relu(self.fc1(x)) |
|
x = self.relu(self.fc2(x)) |
|
x = self.fc3(x) |
|
x = self.fc4(x) |
|
x = self.sigmoid(x) |
|
return x |
|
|
|
|
|
def generate_wealth_signal(iterations=100): |
|
time = np.linspace(0, 10, iterations) |
|
wealth_signal = np.sin(2 * np.pi * time) |
|
return wealth_signal |
|
|
|
|
|
def process_wealth_signal(wealth_signal, model): |
|
processed_signals = [] |
|
for wealth in wealth_signal: |
|
wealth_tensor = torch.tensor([wealth], dtype=torch.float32) |
|
processed_signal = model(wealth_tensor) |
|
processed_signals.append(processed_signal.item()) |
|
return processed_signals |
|
|
|
|
|
def plot_signal_transformation(original_signal, transformed_signal): |
|
plt.figure(figsize=(10, 5)) |
|
plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--') |
|
plt.plot(transformed_signal, label="Positive Energy Signal", color='r') |
|
plt.title("Wealth Signal Storage and Transformation to Positive Energy") |
|
plt.xlabel("Iterations (Time)") |
|
plt.ylabel("Signal Amplitude") |
|
plt.legend() |
|
plt.grid(True) |
|
plt.show() |
|
|
|
|
|
model = WealthSignalStorageNet() |
|
|
|
|
|
iterations = 100 |
|
wealth_signal = generate_wealth_signal(iterations) |
|
|
|
|
|
positive_energy_signal = process_wealth_signal(wealth_signal, model) |
|
|
|
|
|
plot_signal_transformation(wealth_signal, positive_energy_signal) |
|
|
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
class WealthSignalNerveNet(nn.Module): |
|
def __init__(self, input_size=1, hidden_size=64, output_size=1): |
|
super(WealthSignalNerveNet, self).__init__() |
|
|
|
self.fc1 = nn.Linear(input_size, hidden_size) |
|
self.fc2 = nn.Linear(hidden_size, hidden_size) |
|
self.fc3 = nn.Linear(hidden_size, output_size) |
|
self.relu = nn.ReLU() |
|
|
|
def forward(self, x): |
|
x = self.relu(self.fc1(x)) |
|
x = self.relu(self.fc2(x)) |
|
x = self.fc3(x) |
|
return x |
|
|
|
|
|
def generate_wealth_signal(iterations=100): |
|
time = np.linspace(0, 10, iterations) |
|
wealth_signal = np.sin(2 * np.pi * time) |
|
return wealth_signal |
|
|
|
|
|
def transmit_signal(wealth_signal, model): |
|
transmitted_signals = [] |
|
for wealth in wealth_signal: |
|
wealth_tensor = torch.tensor([wealth], dtype=torch.float32) |
|
transmitted_signal = model(wealth_tensor) |
|
transmitted_signals.append(transmitted_signal.item()) |
|
return transmitted_signals |
|
|
|
|
|
def plot_signal_transmission(original_signal, transmitted_signal): |
|
plt.figure(figsize=(12, 6)) |
|
plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--') |
|
plt.plot(transmitted_signal, label="Transmitted Wealth Signal", color='b') |
|
plt.title("Transmission of Wealth Signal Through Nerves") |
|
plt.xlabel("Iterations (Time)") |
|
plt.ylabel("Signal Amplitude") |
|
plt.legend() |
|
plt.grid(True) |
|
plt.show() |
|
|
|
|
|
model = WealthSignalNerveNet() |
|
|
|
|
|
iterations = 100 |
|
wealth_signal = generate_wealth_signal(iterations) |
|
|
|
|
|
transmitted_signal = transmit_signal(wealth_signal, model) |
|
|
|
|
|
plot_signal_transmission(wealth_signal, transmitted_signal) |
|
|
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
class AdvancedWealthSignalNet(nn.Module): |
|
def __init__(self, input_size=1, hidden_size=64, output_size=1): |
|
super(AdvancedWealthSignalNet, self).__init__() |
|
|
|
self.fc1 = nn.Linear(input_size, hidden_size) |
|
self.fc2 = nn.Linear(hidden_size, hidden_size) |
|
self.fc3 = nn.Linear(hidden_size, hidden_size) |
|
self.fc4 = nn.Linear(hidden_size, output_size) |
|
self.fc5 = nn.Linear(output_size, output_size) |
|
self.relu = nn.ReLU() |
|
self.sigmoid = nn.Sigmoid() |
|
self.noise_std = 0.1 |
|
|
|
def forward(self, x): |
|
x = self.relu(self.fc1(x)) |
|
x = self.relu(self.fc2(x)) |
|
x = self.relu(self.fc3(x)) |
|
x = self.fc4(x) |
|
x = self.fc5(x) |
|
x = self.sigmoid(x) |
|
|
|
|
|
noise = torch.normal(mean=0, std=self.noise_std, size=x.size()) |
|
x = x + noise |
|
return x |
|
|
|
|
|
def generate_wealth_signal(iterations=100): |
|
time = np.linspace(0, 10, iterations) |
|
wealth_signal = np.sin(2 * np.pi * time) |
|
return wealth_signal |
|
|
|
|
|
def process_and_protect_signal(wealth_signal, model): |
|
processed_signals = [] |
|
for wealth in wealth_signal: |
|
wealth_tensor = torch.tensor([wealth], dtype=torch.float32) |
|
protected_signal = model(wealth_tensor) |
|
processed_signals.append(protected_signal.item()) |
|
return processed_signals |
|
|
|
|
|
def plot_signal_protection_and_atmospheric_effects(original_signal, processed_signal): |
|
plt.figure(figsize=(12, 6)) |
|
plt.plot(original_signal, label="Wealth Signal", color='g', linestyle='--') |
|
plt.plot(processed_signal, label="Protected", color='r') |
|
plt.title("Atmosecure") |
|
plt.xlabel("Iterations (Time)") |
|
plt.ylabel("Signal Amplitude") |
|
plt.legend() |
|
plt.grid(True) |
|
plt.show() |
|
|
|
|
|
model = AdvancedWealthSignalNet() |
|
|
|
|
|
iterations = 100 |
|
wealth_signal = generate_wealth_signal(iterations) |
|
|
|
|
|
protected_signal = process_and_protect_signal(wealth_signal, model) |
|
|
|
|
|
plot_signal_protection_and_atmospheric_effects(wealth_signal, protected_signal) |