Image-to-Video
English
atmosecure / atmosecure.py
antitheft159's picture
Update atmosecure.py
1abe6a2 verified
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# Define a neural network to simulate signal transmission through nerves
class WealthSignalNerveNet(nn.Module):
def __init__(self, input_size=1, hidden_size=64, output_size=1):
super(WealthSignalNerveNet, self).__init__()
# Simulating the nerve layers (hidden layers)
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
self.relu = nn.ReLU() # Activation to simulate signal flow
def forward(self, x):
x = self.relu(self.fc1(x)) # First layer simulating the first nerve
x = self.relu(self.fc2(x)) # Second nerve layer
x = self.fc3(x) # Final output layer representing the output of the signal through the nerves
return x
# Function to generate wealth signals using a sine wave
def generate_wealth_signal(iterations=100):
time = np.linspace(0, 10, iterations)
wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave representing wealth
return wealth_signal
# Function to transmit wealth signal through the nerve network
def transmit_wealth_signal(wealth_signal, model):
transmitted_signals = []
for wealth in wealth_signal:
wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert wealth signal to tensor
transmitted_signal = model(wealth_tensor) # Pass through nerve model
transmitted_signals.append(transmitted_signal.item())
return transmitted_signals
# Function to visualize the wealth signal transmission
def plot_wealth_signal(original_signal, transmitted_signal):
plt.figure(figsize=(10, 5))
plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--')
plt.plot(transmitted_signal, label="Transmitted Wealth Signal", color='b')
plt.title("Wealth Signal Transmission Through Nerves")
plt.xlabel("Iterations (Time)")
plt.ylabel("Signal Amplitude")
plt.legend()
plt.grid(True)
plt.show()
# Initialize the neural network simulating the nerves
model = WealthSignalNerveNet()
# Generate a wealth signal
iterations = 100
wealth_signal = generate_wealth_signal(iterations)
# Transmit the wealth signal through the nerve model
transmitted_signal = transmit_wealth_signal(wealth_signal, model)
# Visualize the original and transmitted wealth signals
plot_wealth_signal(wealth_signal, transmitted_signal)
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# Define a neural network to simulate signal transmission and storage
class WealthSignalStorageNet(nn.Module):
def __init__(self, input_size=1, hidden_size=64, output_size=1):
super(WealthSignalStorageNet, self).__init__()
# Layers for transmitting and storing the signal
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
self.fc4 = nn.Linear(output_size, output_size) # Additional layer for positive energy transformation
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid() # Sigmoid to ensure positive energy output
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
x = self.fc4(x) # Store signal and transform
x = self.sigmoid(x) # Convert to positive energy
return x
# Function to generate wealth signals using a sine wave
def generate_wealth_signal(iterations=100):
time = np.linspace(0, 10, iterations)
wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave representing wealth
return wealth_signal
# Function to transmit and transform wealth signal through the network
def process_wealth_signal(wealth_signal, model):
processed_signals = []
for wealth in wealth_signal:
wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert wealth signal to tensor
processed_signal = model(wealth_tensor) # Pass through network
processed_signals.append(processed_signal.item())
return processed_signals
# Function to visualize the wealth signal transformation
def plot_signal_transformation(original_signal, transformed_signal):
plt.figure(figsize=(10, 5))
plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--')
plt.plot(transformed_signal, label="Positive Energy Signal", color='r')
plt.title("Wealth Signal Storage and Transformation to Positive Energy")
plt.xlabel("Iterations (Time)")
plt.ylabel("Signal Amplitude")
plt.legend()
plt.grid(True)
plt.show()
# Initialize the neural network for signal processing
model = WealthSignalStorageNet()
# Generate a wealth signal
iterations = 100
wealth_signal = generate_wealth_signal(iterations)
# Process the wealth signal through the network
positive_energy_signal = process_wealth_signal(wealth_signal, model)
# Visualize the original wealth signal and the positive energy signal
plot_signal_transformation(wealth_signal, positive_energy_signal)
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# Define a neural network to simulate nerve transmission
class WealthSignalNerveNet(nn.Module):
def __init__(self, input_size=1, hidden_size=64, output_size=1):
super(WealthSignalNerveNet, self).__init__()
# Layers to simulate nerve transmission
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
self.relu = nn.ReLU() # Activation function to simulate signal processing
def forward(self, x):
x = self.relu(self.fc1(x)) # First nerve layer
x = self.relu(self.fc2(x)) # Second nerve layer
x = self.fc3(x) # Output layer
return x
# Function to generate a wealth signal using a sine wave
def generate_wealth_signal(iterations=100):
time = np.linspace(0, 10, iterations)
wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave to represent wealth
return wealth_signal
# Function to simulate transmission of wealth signal through the nerve network
def transmit_signal(wealth_signal, model):
transmitted_signals = []
for wealth in wealth_signal:
wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert to tensor
transmitted_signal = model(wealth_tensor) # Pass through the neural network
transmitted_signals.append(transmitted_signal.item())
return transmitted_signals
# Function to visualize the wealth signal transmission
def plot_signal_transmission(original_signal, transmitted_signal):
plt.figure(figsize=(12, 6))
plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--')
plt.plot(transmitted_signal, label="Transmitted Wealth Signal", color='b')
plt.title("Transmission of Wealth Signal Through Nerves")
plt.xlabel("Iterations (Time)")
plt.ylabel("Signal Amplitude")
plt.legend()
plt.grid(True)
plt.show()
# Initialize the neural network
model = WealthSignalNerveNet()
# Generate a wealth signal
iterations = 100
wealth_signal = generate_wealth_signal(iterations)
# Transmit the wealth signal through the neural network
transmitted_signal = transmit_signal(wealth_signal, model)
# Visualize the original and transmitted signals
plot_signal_transmission(wealth_signal, transmitted_signal)
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# Define a neural network to simulate encryption, storage, and transmission through atmospheric density
class AdvancedWealthSignalNet(nn.Module):
def __init__(self, input_size=1, hidden_size=64, output_size=1):
super(AdvancedWealthSignalNet, self).__init__()
# Layers to simulate signal encryption, storage, and atmospheric effects
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, hidden_size)
self.fc4 = nn.Linear(hidden_size, output_size)
self.fc5 = nn.Linear(output_size, output_size)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
self.noise_std = 0.1 # Standard deviation for noise simulation
def forward(self, x):
x = self.relu(self.fc1(x)) # Encryption simulation
x = self.relu(self.fc2(x)) # Intermediate storage
x = self.relu(self.fc3(x)) # Further storage
x = self.fc4(x) # Simulate transmission through dense medium
x = self.fc5(x) # Final transformation
x = self.sigmoid(x) # Ensure positive output
# Simulate atmospheric noise
noise = torch.normal(mean=0, std=self.noise_std, size=x.size())
x = x + noise
return x
# Function to generate a wealth signal using a sine wave
def generate_wealth_signal(iterations=100):
time = np.linspace(0, 10, iterations)
wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave to represent wealth
return wealth_signal
# Function to process and protect the wealth signal through the network
def process_and_protect_signal(wealth_signal, model):
processed_signals = []
for wealth in wealth_signal:
wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert to tensor
protected_signal = model(wealth_tensor) # Pass through the network
processed_signals.append(protected_signal.item())
return processed_signals
# Function to visualize the wealth signal with protection and atmospheric effects
def plot_signal_protection_and_atmospheric_effects(original_signal, processed_signal):
plt.figure(figsize=(12, 6))
plt.plot(original_signal, label="Wealth Signal", color='g', linestyle='--')
plt.plot(processed_signal, label="Protected", color='r')
plt.title("Atmosecure")
plt.xlabel("Iterations (Time)")
plt.ylabel("Signal Amplitude")
plt.legend()
plt.grid(True)
plt.show()
# Initialize the neural network for advanced signal processing and protection
model = AdvancedWealthSignalNet()
# Generate a wealth signal
iterations = 100
wealth_signal = generate_wealth_signal(iterations)
# Process and protect the wealth signal through the network
protected_signal = process_and_protect_signal(wealth_signal, model)
# Visualize the original and protected signals
plot_signal_protection_and_atmospheric_effects(wealth_signal, protected_signal)