File size: 10,595 Bytes
b5342e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# Define a neural network to simulate signal transmission through nerves
class WealthSignalNerveNet(nn.Module):
def __init__(self, input_size=1, hidden_size=64, output_size=1):
super(WealthSignalNerveNet, self).__init__()
# Simulating the nerve layers (hidden layers)
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
self.relu = nn.ReLU() # Activation to simulate signal flow
def forward(self, x):
x = self.relu(self.fc1(x)) # First layer simulating the first nerve
x = self.relu(self.fc2(x)) # Second nerve layer
x = self.fc3(x) # Final output layer representing the output of the signal through the nerves
return x
# Function to generate wealth signals using a sine wave
def generate_wealth_signal(iterations=100):
time = np.linspace(0, 10, iterations)
wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave representing wealth
return wealth_signal
# Function to transmit wealth signal through the nerve network
def transmit_wealth_signal(wealth_signal, model):
transmitted_signals = []
for wealth in wealth_signal:
wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert wealth signal to tensor
transmitted_signal = model(wealth_tensor) # Pass through nerve model
transmitted_signals.append(transmitted_signal.item())
return transmitted_signals
# Function to visualize the wealth signal transmission
def plot_wealth_signal(original_signal, transmitted_signal):
plt.figure(figsize=(10, 5))
plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--')
plt.plot(transmitted_signal, label="Transmitted Wealth Signal", color='b')
plt.title("Wealth Signal Transmission Through Nerves")
plt.xlabel("Iterations (Time)")
plt.ylabel("Signal Amplitude")
plt.legend()
plt.grid(True)
plt.show()
# Initialize the neural network simulating the nerves
model = WealthSignalNerveNet()
# Generate a wealth signal
iterations = 100
wealth_signal = generate_wealth_signal(iterations)
# Transmit the wealth signal through the nerve model
transmitted_signal = transmit_wealth_signal(wealth_signal, model)
# Visualize the original and transmitted wealth signals
plot_wealth_signal(wealth_signal, transmitted_signal)
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# Define a neural network to simulate signal transmission and storage
class WealthSignalStorageNet(nn.Module):
def __init__(self, input_size=1, hidden_size=64, output_size=1):
super(WealthSignalStorageNet, self).__init__()
# Layers for transmitting and storing the signal
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
self.fc4 = nn.Linear(output_size, output_size) # Additional layer for positive energy transformation
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid() # Sigmoid to ensure positive energy output
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
x = self.fc4(x) # Store signal and transform
x = self.sigmoid(x) # Convert to positive energy
return x
# Function to generate wealth signals using a sine wave
def generate_wealth_signal(iterations=100):
time = np.linspace(0, 10, iterations)
wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave representing wealth
return wealth_signal
# Function to transmit and transform wealth signal through the network
def process_wealth_signal(wealth_signal, model):
processed_signals = []
for wealth in wealth_signal:
wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert wealth signal to tensor
processed_signal = model(wealth_tensor) # Pass through network
processed_signals.append(processed_signal.item())
return processed_signals
# Function to visualize the wealth signal transformation
def plot_signal_transformation(original_signal, transformed_signal):
plt.figure(figsize=(10, 5))
plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--')
plt.plot(transformed_signal, label="Positive Energy Signal", color='r')
plt.title("Wealth Signal Storage and Transformation to Positive Energy")
plt.xlabel("Iterations (Time)")
plt.ylabel("Signal Amplitude")
plt.legend()
plt.grid(True)
plt.show()
# Initialize the neural network for signal processing
model = WealthSignalStorageNet()
# Generate a wealth signal
iterations = 100
wealth_signal = generate_wealth_signal(iterations)
# Process the wealth signal through the network
positive_energy_signal = process_wealth_signal(wealth_signal, model)
# Visualize the original wealth signal and the positive energy signal
plot_signal_transformation(wealth_signal, positive_energy_signal)
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# Define a neural network to simulate nerve transmission
class WealthSignalNerveNet(nn.Module):
def __init__(self, input_size=1, hidden_size=64, output_size=1):
super(WealthSignalNerveNet, self).__init__()
# Layers to simulate nerve transmission
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
self.relu = nn.ReLU() # Activation function to simulate signal processing
def forward(self, x):
x = self.relu(self.fc1(x)) # First nerve layer
x = self.relu(self.fc2(x)) # Second nerve layer
x = self.fc3(x) # Output layer
return x
# Function to generate a wealth signal using a sine wave
def generate_wealth_signal(iterations=100):
time = np.linspace(0, 10, iterations)
wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave to represent wealth
return wealth_signal
# Function to simulate transmission of wealth signal through the nerve network
def transmit_signal(wealth_signal, model):
transmitted_signals = []
for wealth in wealth_signal:
wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert to tensor
transmitted_signal = model(wealth_tensor) # Pass through the neural network
transmitted_signals.append(transmitted_signal.item())
return transmitted_signals
# Function to visualize the wealth signal transmission
def plot_signal_transmission(original_signal, transmitted_signal):
plt.figure(figsize=(12, 6))
plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--')
plt.plot(transmitted_signal, label="Transmitted Wealth Signal", color='b')
plt.title("Transmission of Wealth Signal Through Nerves")
plt.xlabel("Iterations (Time)")
plt.ylabel("Signal Amplitude")
plt.legend()
plt.grid(True)
plt.show()
# Initialize the neural network
model = WealthSignalNerveNet()
# Generate a wealth signal
iterations = 100
wealth_signal = generate_wealth_signal(iterations)
# Transmit the wealth signal through the neural network
transmitted_signal = transmit_signal(wealth_signal, model)
# Visualize the original and transmitted signals
plot_signal_transmission(wealth_signal, transmitted_signal)
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# Define a neural network to simulate encryption, storage, and transmission through atmospheric density
class AdvancedWealthSignalNet(nn.Module):
def __init__(self, input_size=1, hidden_size=64, output_size=1):
super(AdvancedWealthSignalNet, self).__init__()
# Layers to simulate signal encryption, storage, and atmospheric effects
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, hidden_size)
self.fc4 = nn.Linear(hidden_size, output_size)
self.fc5 = nn.Linear(output_size, output_size)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
self.noise_std = 0.1 # Standard deviation for noise simulation
def forward(self, x):
x = self.relu(self.fc1(x)) # Encryption simulation
x = self.relu(self.fc2(x)) # Intermediate storage
x = self.relu(self.fc3(x)) # Further storage
x = self.fc4(x) # Simulate transmission through dense medium
x = self.fc5(x) # Final transformation
x = self.sigmoid(x) # Ensure positive output
# Simulate atmospheric noise
noise = torch.normal(mean=0, std=self.noise_std, size=x.size())
x = x + noise
return x
# Function to generate a wealth signal using a sine wave
def generate_wealth_signal(iterations=100):
time = np.linspace(0, 10, iterations)
wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave to represent wealth
return wealth_signal
# Function to process and protect the wealth signal through the network
def process_and_protect_signal(wealth_signal, model):
processed_signals = []
for wealth in wealth_signal:
wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert to tensor
protected_signal = model(wealth_tensor) # Pass through the network
processed_signals.append(protected_signal.item())
return processed_signals
# Function to visualize the wealth signal with protection and atmospheric effects
def plot_signal_protection_and_atmospheric_effects(original_signal, processed_signal):
plt.figure(figsize=(12, 6))
plt.plot(original_signal, label="Wealth Signal", color='g', linestyle='--')
plt.plot(processed_signal, label="Protected", color='r')
plt.title("Atmosecure")
plt.xlabel("Iterations (Time)")
plt.ylabel("Signal Amplitude")
plt.legend()
plt.grid(True)
plt.show()
# Initialize the neural network for advanced signal processing and protection
model = AdvancedWealthSignalNet()
# Generate a wealth signal
iterations = 100
wealth_signal = generate_wealth_signal(iterations)
# Process and protect the wealth signal through the network
protected_signal = process_and_protect_signal(wealth_signal, model)
# Visualize the original and protected signals
plot_signal_protection_and_atmospheric_effects(wealth_signal, protected_signal) |