Image-to-Video
English
File size: 10,595 Bytes
b5342e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt

# Define a neural network to simulate signal transmission through nerves
class WealthSignalNerveNet(nn.Module):
    def __init__(self, input_size=1, hidden_size=64, output_size=1):
        super(WealthSignalNerveNet, self).__init__()
        # Simulating the nerve layers (hidden layers)
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.fc2 = nn.Linear(hidden_size, hidden_size)
        self.fc3 = nn.Linear(hidden_size, output_size)
        self.relu = nn.ReLU()  # Activation to simulate signal flow

    def forward(self, x):
        x = self.relu(self.fc1(x))  # First layer simulating the first nerve
        x = self.relu(self.fc2(x))  # Second nerve layer
        x = self.fc3(x)  # Final output layer representing the output of the signal through the nerves
        return x

# Function to generate wealth signals using a sine wave
def generate_wealth_signal(iterations=100):
    time = np.linspace(0, 10, iterations)
    wealth_signal = np.sin(2 * np.pi * time)  # Simple sine wave representing wealth
    return wealth_signal

# Function to transmit wealth signal through the nerve network
def transmit_wealth_signal(wealth_signal, model):
    transmitted_signals = []
    for wealth in wealth_signal:
        wealth_tensor = torch.tensor([wealth], dtype=torch.float32)  # Convert wealth signal to tensor
        transmitted_signal = model(wealth_tensor)  # Pass through nerve model
        transmitted_signals.append(transmitted_signal.item())
    return transmitted_signals

# Function to visualize the wealth signal transmission
def plot_wealth_signal(original_signal, transmitted_signal):
    plt.figure(figsize=(10, 5))
    plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--')
    plt.plot(transmitted_signal, label="Transmitted Wealth Signal", color='b')
    plt.title("Wealth Signal Transmission Through Nerves")
    plt.xlabel("Iterations (Time)")
    plt.ylabel("Signal Amplitude")
    plt.legend()
    plt.grid(True)
    plt.show()

# Initialize the neural network simulating the nerves
model = WealthSignalNerveNet()

# Generate a wealth signal
iterations = 100
wealth_signal = generate_wealth_signal(iterations)

# Transmit the wealth signal through the nerve model
transmitted_signal = transmit_wealth_signal(wealth_signal, model)

# Visualize the original and transmitted wealth signals
plot_wealth_signal(wealth_signal, transmitted_signal)

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt

# Define a neural network to simulate signal transmission and storage
class WealthSignalStorageNet(nn.Module):
    def __init__(self, input_size=1, hidden_size=64, output_size=1):
        super(WealthSignalStorageNet, self).__init__()
        # Layers for transmitting and storing the signal
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.fc2 = nn.Linear(hidden_size, hidden_size)
        self.fc3 = nn.Linear(hidden_size, output_size)
        self.fc4 = nn.Linear(output_size, output_size)  # Additional layer for positive energy transformation
        self.relu = nn.ReLU()
        self.sigmoid = nn.Sigmoid()  # Sigmoid to ensure positive energy output

    def forward(self, x):
        x = self.relu(self.fc1(x))
        x = self.relu(self.fc2(x))
        x = self.fc3(x)
        x = self.fc4(x)  # Store signal and transform
        x = self.sigmoid(x)  # Convert to positive energy
        return x

# Function to generate wealth signals using a sine wave
def generate_wealth_signal(iterations=100):
    time = np.linspace(0, 10, iterations)
    wealth_signal = np.sin(2 * np.pi * time)  # Simple sine wave representing wealth
    return wealth_signal

# Function to transmit and transform wealth signal through the network
def process_wealth_signal(wealth_signal, model):
    processed_signals = []
    for wealth in wealth_signal:
        wealth_tensor = torch.tensor([wealth], dtype=torch.float32)  # Convert wealth signal to tensor
        processed_signal = model(wealth_tensor)  # Pass through network
        processed_signals.append(processed_signal.item())
    return processed_signals

# Function to visualize the wealth signal transformation
def plot_signal_transformation(original_signal, transformed_signal):
    plt.figure(figsize=(10, 5))
    plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--')
    plt.plot(transformed_signal, label="Positive Energy Signal", color='r')
    plt.title("Wealth Signal Storage and Transformation to Positive Energy")
    plt.xlabel("Iterations (Time)")
    plt.ylabel("Signal Amplitude")
    plt.legend()
    plt.grid(True)
    plt.show()

# Initialize the neural network for signal processing
model = WealthSignalStorageNet()

# Generate a wealth signal
iterations = 100
wealth_signal = generate_wealth_signal(iterations)

# Process the wealth signal through the network
positive_energy_signal = process_wealth_signal(wealth_signal, model)

# Visualize the original wealth signal and the positive energy signal
plot_signal_transformation(wealth_signal, positive_energy_signal)

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt

# Define a neural network to simulate nerve transmission
class WealthSignalNerveNet(nn.Module):
    def __init__(self, input_size=1, hidden_size=64, output_size=1):
        super(WealthSignalNerveNet, self).__init__()
        # Layers to simulate nerve transmission
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.fc2 = nn.Linear(hidden_size, hidden_size)
        self.fc3 = nn.Linear(hidden_size, output_size)
        self.relu = nn.ReLU()  # Activation function to simulate signal processing

    def forward(self, x):
        x = self.relu(self.fc1(x))  # First nerve layer
        x = self.relu(self.fc2(x))  # Second nerve layer
        x = self.fc3(x)  # Output layer
        return x

# Function to generate a wealth signal using a sine wave
def generate_wealth_signal(iterations=100):
    time = np.linspace(0, 10, iterations)
    wealth_signal = np.sin(2 * np.pi * time)  # Simple sine wave to represent wealth
    return wealth_signal

# Function to simulate transmission of wealth signal through the nerve network
def transmit_signal(wealth_signal, model):
    transmitted_signals = []
    for wealth in wealth_signal:
        wealth_tensor = torch.tensor([wealth], dtype=torch.float32)  # Convert to tensor
        transmitted_signal = model(wealth_tensor)  # Pass through the neural network
        transmitted_signals.append(transmitted_signal.item())
    return transmitted_signals

# Function to visualize the wealth signal transmission
def plot_signal_transmission(original_signal, transmitted_signal):
    plt.figure(figsize=(12, 6))
    plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--')
    plt.plot(transmitted_signal, label="Transmitted Wealth Signal", color='b')
    plt.title("Transmission of Wealth Signal Through Nerves")
    plt.xlabel("Iterations (Time)")
    plt.ylabel("Signal Amplitude")
    plt.legend()
    plt.grid(True)
    plt.show()

# Initialize the neural network
model = WealthSignalNerveNet()

# Generate a wealth signal
iterations = 100
wealth_signal = generate_wealth_signal(iterations)

# Transmit the wealth signal through the neural network
transmitted_signal = transmit_signal(wealth_signal, model)

# Visualize the original and transmitted signals
plot_signal_transmission(wealth_signal, transmitted_signal)

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt

# Define a neural network to simulate encryption, storage, and transmission through atmospheric density
class AdvancedWealthSignalNet(nn.Module):
    def __init__(self, input_size=1, hidden_size=64, output_size=1):
        super(AdvancedWealthSignalNet, self).__init__()
        # Layers to simulate signal encryption, storage, and atmospheric effects
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.fc2 = nn.Linear(hidden_size, hidden_size)
        self.fc3 = nn.Linear(hidden_size, hidden_size)
        self.fc4 = nn.Linear(hidden_size, output_size)
        self.fc5 = nn.Linear(output_size, output_size)
        self.relu = nn.ReLU()
        self.sigmoid = nn.Sigmoid()
        self.noise_std = 0.1  # Standard deviation for noise simulation

    def forward(self, x):
        x = self.relu(self.fc1(x))  # Encryption simulation
        x = self.relu(self.fc2(x))  # Intermediate storage
        x = self.relu(self.fc3(x))  # Further storage
        x = self.fc4(x)  # Simulate transmission through dense medium
        x = self.fc5(x)  # Final transformation
        x = self.sigmoid(x)  # Ensure positive output

        # Simulate atmospheric noise
        noise = torch.normal(mean=0, std=self.noise_std, size=x.size())
        x = x + noise
        return x

# Function to generate a wealth signal using a sine wave
def generate_wealth_signal(iterations=100):
    time = np.linspace(0, 10, iterations)
    wealth_signal = np.sin(2 * np.pi * time)  # Simple sine wave to represent wealth
    return wealth_signal

# Function to process and protect the wealth signal through the network
def process_and_protect_signal(wealth_signal, model):
    processed_signals = []
    for wealth in wealth_signal:
        wealth_tensor = torch.tensor([wealth], dtype=torch.float32)  # Convert to tensor
        protected_signal = model(wealth_tensor)  # Pass through the network
        processed_signals.append(protected_signal.item())
    return processed_signals

# Function to visualize the wealth signal with protection and atmospheric effects
def plot_signal_protection_and_atmospheric_effects(original_signal, processed_signal):
    plt.figure(figsize=(12, 6))
    plt.plot(original_signal, label="Wealth Signal", color='g', linestyle='--')
    plt.plot(processed_signal, label="Protected", color='r')
    plt.title("Atmosecure")
    plt.xlabel("Iterations (Time)")
    plt.ylabel("Signal Amplitude")
    plt.legend()
    plt.grid(True)
    plt.show()

# Initialize the neural network for advanced signal processing and protection
model = AdvancedWealthSignalNet()

# Generate a wealth signal
iterations = 100
wealth_signal = generate_wealth_signal(iterations)

# Process and protect the wealth signal through the network
protected_signal = process_and_protect_signal(wealth_signal, model)

# Visualize the original and protected signals
plot_signal_protection_and_atmospheric_effects(wealth_signal, protected_signal)