Image-to-Video
English
antitheft159 commited on
Commit
b5342e5
1 Parent(s): f3611b5

Upload atmosecure.py

Browse files
Files changed (1) hide show
  1. atmosecure.py +267 -0
atmosecure.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Atmosecure
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1se4gbirQOBqRsx5WRQjtWBT8mqW0457o
8
+ """
9
+
10
+ import torch
11
+ import torch.nn as nn
12
+ import numpy as np
13
+ import matplotlib.pyplot as plt
14
+
15
+ # Define a neural network to simulate signal transmission through nerves
16
+ class WealthSignalNerveNet(nn.Module):
17
+ def __init__(self, input_size=1, hidden_size=64, output_size=1):
18
+ super(WealthSignalNerveNet, self).__init__()
19
+ # Simulating the nerve layers (hidden layers)
20
+ self.fc1 = nn.Linear(input_size, hidden_size)
21
+ self.fc2 = nn.Linear(hidden_size, hidden_size)
22
+ self.fc3 = nn.Linear(hidden_size, output_size)
23
+ self.relu = nn.ReLU() # Activation to simulate signal flow
24
+
25
+ def forward(self, x):
26
+ x = self.relu(self.fc1(x)) # First layer simulating the first nerve
27
+ x = self.relu(self.fc2(x)) # Second nerve layer
28
+ x = self.fc3(x) # Final output layer representing the output of the signal through the nerves
29
+ return x
30
+
31
+ # Function to generate wealth signals using a sine wave
32
+ def generate_wealth_signal(iterations=100):
33
+ time = np.linspace(0, 10, iterations)
34
+ wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave representing wealth
35
+ return wealth_signal
36
+
37
+ # Function to transmit wealth signal through the nerve network
38
+ def transmit_wealth_signal(wealth_signal, model):
39
+ transmitted_signals = []
40
+ for wealth in wealth_signal:
41
+ wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert wealth signal to tensor
42
+ transmitted_signal = model(wealth_tensor) # Pass through nerve model
43
+ transmitted_signals.append(transmitted_signal.item())
44
+ return transmitted_signals
45
+
46
+ # Function to visualize the wealth signal transmission
47
+ def plot_wealth_signal(original_signal, transmitted_signal):
48
+ plt.figure(figsize=(10, 5))
49
+ plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--')
50
+ plt.plot(transmitted_signal, label="Transmitted Wealth Signal", color='b')
51
+ plt.title("Wealth Signal Transmission Through Nerves")
52
+ plt.xlabel("Iterations (Time)")
53
+ plt.ylabel("Signal Amplitude")
54
+ plt.legend()
55
+ plt.grid(True)
56
+ plt.show()
57
+
58
+ # Initialize the neural network simulating the nerves
59
+ model = WealthSignalNerveNet()
60
+
61
+ # Generate a wealth signal
62
+ iterations = 100
63
+ wealth_signal = generate_wealth_signal(iterations)
64
+
65
+ # Transmit the wealth signal through the nerve model
66
+ transmitted_signal = transmit_wealth_signal(wealth_signal, model)
67
+
68
+ # Visualize the original and transmitted wealth signals
69
+ plot_wealth_signal(wealth_signal, transmitted_signal)
70
+
71
+ import torch
72
+ import torch.nn as nn
73
+ import numpy as np
74
+ import matplotlib.pyplot as plt
75
+
76
+ # Define a neural network to simulate signal transmission and storage
77
+ class WealthSignalStorageNet(nn.Module):
78
+ def __init__(self, input_size=1, hidden_size=64, output_size=1):
79
+ super(WealthSignalStorageNet, self).__init__()
80
+ # Layers for transmitting and storing the signal
81
+ self.fc1 = nn.Linear(input_size, hidden_size)
82
+ self.fc2 = nn.Linear(hidden_size, hidden_size)
83
+ self.fc3 = nn.Linear(hidden_size, output_size)
84
+ self.fc4 = nn.Linear(output_size, output_size) # Additional layer for positive energy transformation
85
+ self.relu = nn.ReLU()
86
+ self.sigmoid = nn.Sigmoid() # Sigmoid to ensure positive energy output
87
+
88
+ def forward(self, x):
89
+ x = self.relu(self.fc1(x))
90
+ x = self.relu(self.fc2(x))
91
+ x = self.fc3(x)
92
+ x = self.fc4(x) # Store signal and transform
93
+ x = self.sigmoid(x) # Convert to positive energy
94
+ return x
95
+
96
+ # Function to generate wealth signals using a sine wave
97
+ def generate_wealth_signal(iterations=100):
98
+ time = np.linspace(0, 10, iterations)
99
+ wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave representing wealth
100
+ return wealth_signal
101
+
102
+ # Function to transmit and transform wealth signal through the network
103
+ def process_wealth_signal(wealth_signal, model):
104
+ processed_signals = []
105
+ for wealth in wealth_signal:
106
+ wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert wealth signal to tensor
107
+ processed_signal = model(wealth_tensor) # Pass through network
108
+ processed_signals.append(processed_signal.item())
109
+ return processed_signals
110
+
111
+ # Function to visualize the wealth signal transformation
112
+ def plot_signal_transformation(original_signal, transformed_signal):
113
+ plt.figure(figsize=(10, 5))
114
+ plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--')
115
+ plt.plot(transformed_signal, label="Positive Energy Signal", color='r')
116
+ plt.title("Wealth Signal Storage and Transformation to Positive Energy")
117
+ plt.xlabel("Iterations (Time)")
118
+ plt.ylabel("Signal Amplitude")
119
+ plt.legend()
120
+ plt.grid(True)
121
+ plt.show()
122
+
123
+ # Initialize the neural network for signal processing
124
+ model = WealthSignalStorageNet()
125
+
126
+ # Generate a wealth signal
127
+ iterations = 100
128
+ wealth_signal = generate_wealth_signal(iterations)
129
+
130
+ # Process the wealth signal through the network
131
+ positive_energy_signal = process_wealth_signal(wealth_signal, model)
132
+
133
+ # Visualize the original wealth signal and the positive energy signal
134
+ plot_signal_transformation(wealth_signal, positive_energy_signal)
135
+
136
+ import torch
137
+ import torch.nn as nn
138
+ import numpy as np
139
+ import matplotlib.pyplot as plt
140
+
141
+ # Define a neural network to simulate nerve transmission
142
+ class WealthSignalNerveNet(nn.Module):
143
+ def __init__(self, input_size=1, hidden_size=64, output_size=1):
144
+ super(WealthSignalNerveNet, self).__init__()
145
+ # Layers to simulate nerve transmission
146
+ self.fc1 = nn.Linear(input_size, hidden_size)
147
+ self.fc2 = nn.Linear(hidden_size, hidden_size)
148
+ self.fc3 = nn.Linear(hidden_size, output_size)
149
+ self.relu = nn.ReLU() # Activation function to simulate signal processing
150
+
151
+ def forward(self, x):
152
+ x = self.relu(self.fc1(x)) # First nerve layer
153
+ x = self.relu(self.fc2(x)) # Second nerve layer
154
+ x = self.fc3(x) # Output layer
155
+ return x
156
+
157
+ # Function to generate a wealth signal using a sine wave
158
+ def generate_wealth_signal(iterations=100):
159
+ time = np.linspace(0, 10, iterations)
160
+ wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave to represent wealth
161
+ return wealth_signal
162
+
163
+ # Function to simulate transmission of wealth signal through the nerve network
164
+ def transmit_signal(wealth_signal, model):
165
+ transmitted_signals = []
166
+ for wealth in wealth_signal:
167
+ wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert to tensor
168
+ transmitted_signal = model(wealth_tensor) # Pass through the neural network
169
+ transmitted_signals.append(transmitted_signal.item())
170
+ return transmitted_signals
171
+
172
+ # Function to visualize the wealth signal transmission
173
+ def plot_signal_transmission(original_signal, transmitted_signal):
174
+ plt.figure(figsize=(12, 6))
175
+ plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--')
176
+ plt.plot(transmitted_signal, label="Transmitted Wealth Signal", color='b')
177
+ plt.title("Transmission of Wealth Signal Through Nerves")
178
+ plt.xlabel("Iterations (Time)")
179
+ plt.ylabel("Signal Amplitude")
180
+ plt.legend()
181
+ plt.grid(True)
182
+ plt.show()
183
+
184
+ # Initialize the neural network
185
+ model = WealthSignalNerveNet()
186
+
187
+ # Generate a wealth signal
188
+ iterations = 100
189
+ wealth_signal = generate_wealth_signal(iterations)
190
+
191
+ # Transmit the wealth signal through the neural network
192
+ transmitted_signal = transmit_signal(wealth_signal, model)
193
+
194
+ # Visualize the original and transmitted signals
195
+ plot_signal_transmission(wealth_signal, transmitted_signal)
196
+
197
+ import torch
198
+ import torch.nn as nn
199
+ import numpy as np
200
+ import matplotlib.pyplot as plt
201
+
202
+ # Define a neural network to simulate encryption, storage, and transmission through atmospheric density
203
+ class AdvancedWealthSignalNet(nn.Module):
204
+ def __init__(self, input_size=1, hidden_size=64, output_size=1):
205
+ super(AdvancedWealthSignalNet, self).__init__()
206
+ # Layers to simulate signal encryption, storage, and atmospheric effects
207
+ self.fc1 = nn.Linear(input_size, hidden_size)
208
+ self.fc2 = nn.Linear(hidden_size, hidden_size)
209
+ self.fc3 = nn.Linear(hidden_size, hidden_size)
210
+ self.fc4 = nn.Linear(hidden_size, output_size)
211
+ self.fc5 = nn.Linear(output_size, output_size)
212
+ self.relu = nn.ReLU()
213
+ self.sigmoid = nn.Sigmoid()
214
+ self.noise_std = 0.1 # Standard deviation for noise simulation
215
+
216
+ def forward(self, x):
217
+ x = self.relu(self.fc1(x)) # Encryption simulation
218
+ x = self.relu(self.fc2(x)) # Intermediate storage
219
+ x = self.relu(self.fc3(x)) # Further storage
220
+ x = self.fc4(x) # Simulate transmission through dense medium
221
+ x = self.fc5(x) # Final transformation
222
+ x = self.sigmoid(x) # Ensure positive output
223
+
224
+ # Simulate atmospheric noise
225
+ noise = torch.normal(mean=0, std=self.noise_std, size=x.size())
226
+ x = x + noise
227
+ return x
228
+
229
+ # Function to generate a wealth signal using a sine wave
230
+ def generate_wealth_signal(iterations=100):
231
+ time = np.linspace(0, 10, iterations)
232
+ wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave to represent wealth
233
+ return wealth_signal
234
+
235
+ # Function to process and protect the wealth signal through the network
236
+ def process_and_protect_signal(wealth_signal, model):
237
+ processed_signals = []
238
+ for wealth in wealth_signal:
239
+ wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert to tensor
240
+ protected_signal = model(wealth_tensor) # Pass through the network
241
+ processed_signals.append(protected_signal.item())
242
+ return processed_signals
243
+
244
+ # Function to visualize the wealth signal with protection and atmospheric effects
245
+ def plot_signal_protection_and_atmospheric_effects(original_signal, processed_signal):
246
+ plt.figure(figsize=(12, 6))
247
+ plt.plot(original_signal, label="Wealth Signal", color='g', linestyle='--')
248
+ plt.plot(processed_signal, label="Protected", color='r')
249
+ plt.title("Atmosecure")
250
+ plt.xlabel("Iterations (Time)")
251
+ plt.ylabel("Signal Amplitude")
252
+ plt.legend()
253
+ plt.grid(True)
254
+ plt.show()
255
+
256
+ # Initialize the neural network for advanced signal processing and protection
257
+ model = AdvancedWealthSignalNet()
258
+
259
+ # Generate a wealth signal
260
+ iterations = 100
261
+ wealth_signal = generate_wealth_signal(iterations)
262
+
263
+ # Process and protect the wealth signal through the network
264
+ protected_signal = process_and_protect_signal(wealth_signal, model)
265
+
266
+ # Visualize the original and protected signals
267
+ plot_signal_protection_and_atmospheric_effects(wealth_signal, protected_signal)