antitheft159
commited on
Commit
•
b5342e5
1
Parent(s):
f3611b5
Upload atmosecure.py
Browse files- atmosecure.py +267 -0
atmosecure.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Atmosecure
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1se4gbirQOBqRsx5WRQjtWBT8mqW0457o
|
8 |
+
"""
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import numpy as np
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
|
15 |
+
# Define a neural network to simulate signal transmission through nerves
|
16 |
+
class WealthSignalNerveNet(nn.Module):
|
17 |
+
def __init__(self, input_size=1, hidden_size=64, output_size=1):
|
18 |
+
super(WealthSignalNerveNet, self).__init__()
|
19 |
+
# Simulating the nerve layers (hidden layers)
|
20 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
21 |
+
self.fc2 = nn.Linear(hidden_size, hidden_size)
|
22 |
+
self.fc3 = nn.Linear(hidden_size, output_size)
|
23 |
+
self.relu = nn.ReLU() # Activation to simulate signal flow
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
x = self.relu(self.fc1(x)) # First layer simulating the first nerve
|
27 |
+
x = self.relu(self.fc2(x)) # Second nerve layer
|
28 |
+
x = self.fc3(x) # Final output layer representing the output of the signal through the nerves
|
29 |
+
return x
|
30 |
+
|
31 |
+
# Function to generate wealth signals using a sine wave
|
32 |
+
def generate_wealth_signal(iterations=100):
|
33 |
+
time = np.linspace(0, 10, iterations)
|
34 |
+
wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave representing wealth
|
35 |
+
return wealth_signal
|
36 |
+
|
37 |
+
# Function to transmit wealth signal through the nerve network
|
38 |
+
def transmit_wealth_signal(wealth_signal, model):
|
39 |
+
transmitted_signals = []
|
40 |
+
for wealth in wealth_signal:
|
41 |
+
wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert wealth signal to tensor
|
42 |
+
transmitted_signal = model(wealth_tensor) # Pass through nerve model
|
43 |
+
transmitted_signals.append(transmitted_signal.item())
|
44 |
+
return transmitted_signals
|
45 |
+
|
46 |
+
# Function to visualize the wealth signal transmission
|
47 |
+
def plot_wealth_signal(original_signal, transmitted_signal):
|
48 |
+
plt.figure(figsize=(10, 5))
|
49 |
+
plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--')
|
50 |
+
plt.plot(transmitted_signal, label="Transmitted Wealth Signal", color='b')
|
51 |
+
plt.title("Wealth Signal Transmission Through Nerves")
|
52 |
+
plt.xlabel("Iterations (Time)")
|
53 |
+
plt.ylabel("Signal Amplitude")
|
54 |
+
plt.legend()
|
55 |
+
plt.grid(True)
|
56 |
+
plt.show()
|
57 |
+
|
58 |
+
# Initialize the neural network simulating the nerves
|
59 |
+
model = WealthSignalNerveNet()
|
60 |
+
|
61 |
+
# Generate a wealth signal
|
62 |
+
iterations = 100
|
63 |
+
wealth_signal = generate_wealth_signal(iterations)
|
64 |
+
|
65 |
+
# Transmit the wealth signal through the nerve model
|
66 |
+
transmitted_signal = transmit_wealth_signal(wealth_signal, model)
|
67 |
+
|
68 |
+
# Visualize the original and transmitted wealth signals
|
69 |
+
plot_wealth_signal(wealth_signal, transmitted_signal)
|
70 |
+
|
71 |
+
import torch
|
72 |
+
import torch.nn as nn
|
73 |
+
import numpy as np
|
74 |
+
import matplotlib.pyplot as plt
|
75 |
+
|
76 |
+
# Define a neural network to simulate signal transmission and storage
|
77 |
+
class WealthSignalStorageNet(nn.Module):
|
78 |
+
def __init__(self, input_size=1, hidden_size=64, output_size=1):
|
79 |
+
super(WealthSignalStorageNet, self).__init__()
|
80 |
+
# Layers for transmitting and storing the signal
|
81 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
82 |
+
self.fc2 = nn.Linear(hidden_size, hidden_size)
|
83 |
+
self.fc3 = nn.Linear(hidden_size, output_size)
|
84 |
+
self.fc4 = nn.Linear(output_size, output_size) # Additional layer for positive energy transformation
|
85 |
+
self.relu = nn.ReLU()
|
86 |
+
self.sigmoid = nn.Sigmoid() # Sigmoid to ensure positive energy output
|
87 |
+
|
88 |
+
def forward(self, x):
|
89 |
+
x = self.relu(self.fc1(x))
|
90 |
+
x = self.relu(self.fc2(x))
|
91 |
+
x = self.fc3(x)
|
92 |
+
x = self.fc4(x) # Store signal and transform
|
93 |
+
x = self.sigmoid(x) # Convert to positive energy
|
94 |
+
return x
|
95 |
+
|
96 |
+
# Function to generate wealth signals using a sine wave
|
97 |
+
def generate_wealth_signal(iterations=100):
|
98 |
+
time = np.linspace(0, 10, iterations)
|
99 |
+
wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave representing wealth
|
100 |
+
return wealth_signal
|
101 |
+
|
102 |
+
# Function to transmit and transform wealth signal through the network
|
103 |
+
def process_wealth_signal(wealth_signal, model):
|
104 |
+
processed_signals = []
|
105 |
+
for wealth in wealth_signal:
|
106 |
+
wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert wealth signal to tensor
|
107 |
+
processed_signal = model(wealth_tensor) # Pass through network
|
108 |
+
processed_signals.append(processed_signal.item())
|
109 |
+
return processed_signals
|
110 |
+
|
111 |
+
# Function to visualize the wealth signal transformation
|
112 |
+
def plot_signal_transformation(original_signal, transformed_signal):
|
113 |
+
plt.figure(figsize=(10, 5))
|
114 |
+
plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--')
|
115 |
+
plt.plot(transformed_signal, label="Positive Energy Signal", color='r')
|
116 |
+
plt.title("Wealth Signal Storage and Transformation to Positive Energy")
|
117 |
+
plt.xlabel("Iterations (Time)")
|
118 |
+
plt.ylabel("Signal Amplitude")
|
119 |
+
plt.legend()
|
120 |
+
plt.grid(True)
|
121 |
+
plt.show()
|
122 |
+
|
123 |
+
# Initialize the neural network for signal processing
|
124 |
+
model = WealthSignalStorageNet()
|
125 |
+
|
126 |
+
# Generate a wealth signal
|
127 |
+
iterations = 100
|
128 |
+
wealth_signal = generate_wealth_signal(iterations)
|
129 |
+
|
130 |
+
# Process the wealth signal through the network
|
131 |
+
positive_energy_signal = process_wealth_signal(wealth_signal, model)
|
132 |
+
|
133 |
+
# Visualize the original wealth signal and the positive energy signal
|
134 |
+
plot_signal_transformation(wealth_signal, positive_energy_signal)
|
135 |
+
|
136 |
+
import torch
|
137 |
+
import torch.nn as nn
|
138 |
+
import numpy as np
|
139 |
+
import matplotlib.pyplot as plt
|
140 |
+
|
141 |
+
# Define a neural network to simulate nerve transmission
|
142 |
+
class WealthSignalNerveNet(nn.Module):
|
143 |
+
def __init__(self, input_size=1, hidden_size=64, output_size=1):
|
144 |
+
super(WealthSignalNerveNet, self).__init__()
|
145 |
+
# Layers to simulate nerve transmission
|
146 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
147 |
+
self.fc2 = nn.Linear(hidden_size, hidden_size)
|
148 |
+
self.fc3 = nn.Linear(hidden_size, output_size)
|
149 |
+
self.relu = nn.ReLU() # Activation function to simulate signal processing
|
150 |
+
|
151 |
+
def forward(self, x):
|
152 |
+
x = self.relu(self.fc1(x)) # First nerve layer
|
153 |
+
x = self.relu(self.fc2(x)) # Second nerve layer
|
154 |
+
x = self.fc3(x) # Output layer
|
155 |
+
return x
|
156 |
+
|
157 |
+
# Function to generate a wealth signal using a sine wave
|
158 |
+
def generate_wealth_signal(iterations=100):
|
159 |
+
time = np.linspace(0, 10, iterations)
|
160 |
+
wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave to represent wealth
|
161 |
+
return wealth_signal
|
162 |
+
|
163 |
+
# Function to simulate transmission of wealth signal through the nerve network
|
164 |
+
def transmit_signal(wealth_signal, model):
|
165 |
+
transmitted_signals = []
|
166 |
+
for wealth in wealth_signal:
|
167 |
+
wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert to tensor
|
168 |
+
transmitted_signal = model(wealth_tensor) # Pass through the neural network
|
169 |
+
transmitted_signals.append(transmitted_signal.item())
|
170 |
+
return transmitted_signals
|
171 |
+
|
172 |
+
# Function to visualize the wealth signal transmission
|
173 |
+
def plot_signal_transmission(original_signal, transmitted_signal):
|
174 |
+
plt.figure(figsize=(12, 6))
|
175 |
+
plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--')
|
176 |
+
plt.plot(transmitted_signal, label="Transmitted Wealth Signal", color='b')
|
177 |
+
plt.title("Transmission of Wealth Signal Through Nerves")
|
178 |
+
plt.xlabel("Iterations (Time)")
|
179 |
+
plt.ylabel("Signal Amplitude")
|
180 |
+
plt.legend()
|
181 |
+
plt.grid(True)
|
182 |
+
plt.show()
|
183 |
+
|
184 |
+
# Initialize the neural network
|
185 |
+
model = WealthSignalNerveNet()
|
186 |
+
|
187 |
+
# Generate a wealth signal
|
188 |
+
iterations = 100
|
189 |
+
wealth_signal = generate_wealth_signal(iterations)
|
190 |
+
|
191 |
+
# Transmit the wealth signal through the neural network
|
192 |
+
transmitted_signal = transmit_signal(wealth_signal, model)
|
193 |
+
|
194 |
+
# Visualize the original and transmitted signals
|
195 |
+
plot_signal_transmission(wealth_signal, transmitted_signal)
|
196 |
+
|
197 |
+
import torch
|
198 |
+
import torch.nn as nn
|
199 |
+
import numpy as np
|
200 |
+
import matplotlib.pyplot as plt
|
201 |
+
|
202 |
+
# Define a neural network to simulate encryption, storage, and transmission through atmospheric density
|
203 |
+
class AdvancedWealthSignalNet(nn.Module):
|
204 |
+
def __init__(self, input_size=1, hidden_size=64, output_size=1):
|
205 |
+
super(AdvancedWealthSignalNet, self).__init__()
|
206 |
+
# Layers to simulate signal encryption, storage, and atmospheric effects
|
207 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
208 |
+
self.fc2 = nn.Linear(hidden_size, hidden_size)
|
209 |
+
self.fc3 = nn.Linear(hidden_size, hidden_size)
|
210 |
+
self.fc4 = nn.Linear(hidden_size, output_size)
|
211 |
+
self.fc5 = nn.Linear(output_size, output_size)
|
212 |
+
self.relu = nn.ReLU()
|
213 |
+
self.sigmoid = nn.Sigmoid()
|
214 |
+
self.noise_std = 0.1 # Standard deviation for noise simulation
|
215 |
+
|
216 |
+
def forward(self, x):
|
217 |
+
x = self.relu(self.fc1(x)) # Encryption simulation
|
218 |
+
x = self.relu(self.fc2(x)) # Intermediate storage
|
219 |
+
x = self.relu(self.fc3(x)) # Further storage
|
220 |
+
x = self.fc4(x) # Simulate transmission through dense medium
|
221 |
+
x = self.fc5(x) # Final transformation
|
222 |
+
x = self.sigmoid(x) # Ensure positive output
|
223 |
+
|
224 |
+
# Simulate atmospheric noise
|
225 |
+
noise = torch.normal(mean=0, std=self.noise_std, size=x.size())
|
226 |
+
x = x + noise
|
227 |
+
return x
|
228 |
+
|
229 |
+
# Function to generate a wealth signal using a sine wave
|
230 |
+
def generate_wealth_signal(iterations=100):
|
231 |
+
time = np.linspace(0, 10, iterations)
|
232 |
+
wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave to represent wealth
|
233 |
+
return wealth_signal
|
234 |
+
|
235 |
+
# Function to process and protect the wealth signal through the network
|
236 |
+
def process_and_protect_signal(wealth_signal, model):
|
237 |
+
processed_signals = []
|
238 |
+
for wealth in wealth_signal:
|
239 |
+
wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert to tensor
|
240 |
+
protected_signal = model(wealth_tensor) # Pass through the network
|
241 |
+
processed_signals.append(protected_signal.item())
|
242 |
+
return processed_signals
|
243 |
+
|
244 |
+
# Function to visualize the wealth signal with protection and atmospheric effects
|
245 |
+
def plot_signal_protection_and_atmospheric_effects(original_signal, processed_signal):
|
246 |
+
plt.figure(figsize=(12, 6))
|
247 |
+
plt.plot(original_signal, label="Wealth Signal", color='g', linestyle='--')
|
248 |
+
plt.plot(processed_signal, label="Protected", color='r')
|
249 |
+
plt.title("Atmosecure")
|
250 |
+
plt.xlabel("Iterations (Time)")
|
251 |
+
plt.ylabel("Signal Amplitude")
|
252 |
+
plt.legend()
|
253 |
+
plt.grid(True)
|
254 |
+
plt.show()
|
255 |
+
|
256 |
+
# Initialize the neural network for advanced signal processing and protection
|
257 |
+
model = AdvancedWealthSignalNet()
|
258 |
+
|
259 |
+
# Generate a wealth signal
|
260 |
+
iterations = 100
|
261 |
+
wealth_signal = generate_wealth_signal(iterations)
|
262 |
+
|
263 |
+
# Process and protect the wealth signal through the network
|
264 |
+
protected_signal = process_and_protect_signal(wealth_signal, model)
|
265 |
+
|
266 |
+
# Visualize the original and protected signals
|
267 |
+
plot_signal_protection_and_atmospheric_effects(wealth_signal, protected_signal)
|