|
|
|
"""HoloWealth |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1lObCKG_uGdcldMmKDoHnuSd34OUy4EmH |
|
""" |
|
|
|
import torch |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from matplotlib.animation import FuncAnimation |
|
|
|
waveform_size = 100 |
|
frequency = 0.5 |
|
amplitude = 5.0 |
|
direction_angle = np.pi / 4 |
|
total_time_hours = 24 |
|
time_steps = 240 |
|
|
|
time_interval = total_time_hours / time_steps |
|
|
|
x = torch.linspace(-waveform_size // 2, waveform_size // 2, waveform_size) |
|
y = torch.linspace(-waveform_size // 2, waveform_size // 2, waveform_size) |
|
X, Y = torch.meshgrid(x, y) |
|
|
|
def infinite_waveform(t): |
|
return amplitude * torch.cos(2 * np.pi * frequency * (X * torch.cos(direction) + Y * torch.sin(direction_angle)) + 2 * np.pi * t) |
|
|
|
wealth_data = torch.rand(waveform_size, waveform_size) * 100 |
|
total_wealth_energy = wealth_data ** 2 |
|
|
|
noise_mask = torch.randn(waveform_size, waveform_size) * 0.1 |
|
protected_wealth_energy = total_wealth_energy + noise_mask |
|
|
|
wealth_energy_per_time = protected_wealth_energy / time_steps |
|
|
|
fig, ax = plt.subplots(figsize=(8, 6)) |
|
signal_plot = ax.imshow(torch.zeros(waveform_size, waveform_size).numpy(), cmap='plasma', origin='lower') |
|
plt.colorbar(signal_plot, ax=ax, label='Signal Intensity') |
|
ax.set_title("HoloWealth") |
|
ax.set_xlabel('X Axis') |
|
ax.set_ylabel('Y Axis') |
|
|
|
def update(t): |
|
wave = infinite_waveform(t * time_interval) |
|
combined_signal = wave * wealth_energy_per_time |
|
signal_plot.set_data(combined_signal.numpy()) |
|
ax.set_title(f"Signal at Time Step: {t}/{time_steps}") |
|
|
|
ani = FuncAnimation(fig, update, frames=time_steps, interval=100, repeat=False) |
|
|
|
plt.show() |