File size: 1,675 Bytes
b85fcf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
# -*- coding: utf-8 -*-
"""HoloWealth
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1lObCKG_uGdcldMmKDoHnuSd34OUy4EmH
"""
import torch
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
waveform_size = 100
frequency = 0.5
amplitude = 5.0
direction_angle = np.pi / 4
total_time_hours = 24
time_steps = 240
time_interval = total_time_hours / time_steps
x = torch.linspace(-waveform_size // 2, waveform_size // 2, waveform_size)
y = torch.linspace(-waveform_size // 2, waveform_size // 2, waveform_size)
X, Y = torch.meshgrid(x, y)
def infinite_waveform(t):
return amplitude * torch.cos(2 * np.pi * frequency * (X * torch.cos(direction) + Y * torch.sin(direction_angle)) + 2 * np.pi * t)
wealth_data = torch.rand(waveform_size, waveform_size) * 100
total_wealth_energy = wealth_data ** 2
noise_mask = torch.randn(waveform_size, waveform_size) * 0.1
protected_wealth_energy = total_wealth_energy + noise_mask
wealth_energy_per_time = protected_wealth_energy / time_steps
fig, ax = plt.subplots(figsize=(8, 6))
signal_plot = ax.imshow(torch.zeros(waveform_size, waveform_size).numpy(), cmap='plasma', origin='lower')
plt.colorbar(signal_plot, ax=ax, label='Signal Intensity')
ax.set_title("HoloWealth")
ax.set_xlabel('X Axis')
ax.set_ylabel('Y Axis')
def update(t):
wave = infinite_waveform(t * time_interval)
combined_signal = wave * wealth_energy_per_time
signal_plot.set_data(combined_signal.numpy())
ax.set_title(f"Signal at Time Step: {t}/{time_steps}")
ani = FuncAnimation(fig, update, frames=time_steps, interval=100, repeat=False)
plt.show() |