See axolotl config
axolotl version: 0.4.0
base_model: andysalerno/mistral-sft-v3
model_type: AutoModelForCausalLM
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: andysalerno/rainbowfish-v1
type:
system_prompt: ""
field_system: system
field_instruction: input
field_output: output
format: "{instruction}"
no_input_format: "{instruction}"
dataset_prepared_path: last_run_prepared
val_set_size: 0.005
output_dir: ./lora-out-rainbow7
adapter: lora
lora_model_dir:
sequence_len: 2048
sample_packing: false # was true
eval_sample_packing: false
pad_to_sequence_len: false
padding_side: left
lora_r: 64
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project: axolotl
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 4
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
# early_stopping_patience: 3
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
hub_strategy: "every_save"
hub_model_id: andysalerno/rainbowfish-v7
num_epochs: 2
warmup_steps: 100
# warmup_ratio: 0.1
eval_steps: 200
eval_table_size:
eval_table_max_new_tokens: 128
# save_steps: 5
# max_steps: 400
saves_per_epoch: 2
debug:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
bos_token: "<|im_start|>"
eos_token: "<|im_end|>"
unk_token: "<unk>"
rainbowfish-v7
This model is a fine-tuned version of andysalerno/mistral-sft-v3 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6464
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6514 | 0.18 | 200 | 0.6828 |
0.6875 | 0.37 | 400 | 0.6691 |
0.6626 | 0.55 | 600 | 0.6625 |
0.688 | 0.74 | 800 | 0.6558 |
0.7143 | 0.92 | 1000 | 0.6520 |
0.5243 | 1.11 | 1200 | 0.6495 |
0.6205 | 1.29 | 1400 | 0.6482 |
0.6159 | 1.47 | 1600 | 0.6469 |
0.6287 | 1.66 | 1800 | 0.6465 |
0.6606 | 1.84 | 2000 | 0.6464 |
Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 4