metadata
license: other
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
base_model: anakin87/gemma-2b-orpo
tags:
- orpo
datasets:
- alvarobartt/dpo-mix-7k-simplified
language:
- en
gemma-2b-orpo-GGUF
This is a GGUF quantized version of the gemma-2b-orpo
model:
an ORPO fine-tune of google/gemma-2b.
You can find more information, including evaluation and training/usage notebook in the gemma-2b-orpo
model card
🎮 Model in action
The model can run with all the libraries that are part of the Llama.cpp ecosystem.
If you need to apply the prompt template manually, take a look at the tokenizer_config.json of the original model.
📱 Run the model on a budget smartphone -> see my recent post
Here a simple example with Llama.cpp python:
! pip install llama-cpp-python
from llama_cpp import Llama
llm = Llama.from_pretrained(
repo_id="anakin87/gemma-2b-orpo-GGUF",
filename="gemma-2b-orpo.Q5_K_M.gguf",
verbose=True # for a known bug, verbose must be True
)
# text generation - prompt template applied manually
llm("<bos><|im_start|> user\nName the planets in the solar system<|im_end|>\n<|im_start|>assistant\n", max_tokens=75)
# chat completion - prompt template automatically applied
llm.create_chat_completion(
messages = [
{
"role": "user",
"content": "Please list some places to visit in Italy"
}
]
)