File size: 22,308 Bytes
dc0edd8 f63b3fd dc0edd8 f63b3fd dc0edd8 f63b3fd dc0edd8 f63b3fd dc0edd8 f63b3fd dc0edd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
2021-11-17 23:21:43,874 ----------------------------------------------------------------------------------------------------
2021-11-17 23:21:43,875 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): RobertaModel(
(embeddings): RobertaEmbeddings(
(word_embeddings): Embedding(50265, 768, padding_idx=1)
(position_embeddings): Embedding(514, 768, padding_idx=1)
(token_type_embeddings): Embedding(1, 768)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): RobertaEncoder(
(layer): ModuleList(
(0): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): RobertaPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(word_dropout): WordDropout(p=0.05)
(locked_dropout): LockedDropout(p=0.5)
(embedding2nn): Linear(in_features=1536, out_features=1536, bias=True)
(linear): Linear(in_features=1536, out_features=16, bias=True)
(beta): 1.0
(weights): None
(weight_tensor) None
)"
2021-11-17 23:21:43,876 ----------------------------------------------------------------------------------------------------
2021-11-17 23:21:43,877 Corpus: "Corpus: 56700 train + 6300 dev + 7000 test sentences"
2021-11-17 23:21:43,877 ----------------------------------------------------------------------------------------------------
2021-11-17 23:21:43,878 Parameters:
2021-11-17 23:21:43,878 - learning_rate: "5e-05"
2021-11-17 23:21:43,879 - mini_batch_size: "64"
2021-11-17 23:21:43,879 - patience: "3"
2021-11-17 23:21:43,879 - anneal_factor: "0.5"
2021-11-17 23:21:43,880 - max_epochs: "8"
2021-11-17 23:21:43,881 - shuffle: "True"
2021-11-17 23:21:43,881 - train_with_dev: "False"
2021-11-17 23:21:43,882 - batch_growth_annealing: "False"
2021-11-17 23:21:43,882 ----------------------------------------------------------------------------------------------------
2021-11-17 23:21:43,883 Model training base path: "training/flair_ner/en/17112021_231902"
2021-11-17 23:21:43,883 ----------------------------------------------------------------------------------------------------
2021-11-17 23:21:43,884 Device: cuda
2021-11-17 23:21:43,885 ----------------------------------------------------------------------------------------------------
2021-11-17 23:21:43,885 Embeddings storage mode: cpu
2021-11-17 23:21:43,886 ----------------------------------------------------------------------------------------------------
2021-11-17 23:21:57,350 epoch 1 - iter 88/886 - loss 0.50060718 - samples/sec: 418.55 - lr: 0.000050
2021-11-17 23:22:10,500 epoch 1 - iter 176/886 - loss 0.32189657 - samples/sec: 428.58 - lr: 0.000050
2021-11-17 23:22:23,215 epoch 1 - iter 264/886 - loss 0.25798771 - samples/sec: 443.41 - lr: 0.000050
2021-11-17 23:22:35,888 epoch 1 - iter 352/886 - loss 0.22669943 - samples/sec: 444.82 - lr: 0.000050
2021-11-17 23:22:48,672 epoch 1 - iter 440/886 - loss 0.20548598 - samples/sec: 440.79 - lr: 0.000050
2021-11-17 23:23:01,458 epoch 1 - iter 528/886 - loss 0.19096343 - samples/sec: 440.79 - lr: 0.000050
2021-11-17 23:23:14,258 epoch 1 - iter 616/886 - loss 0.18023473 - samples/sec: 440.24 - lr: 0.000050
2021-11-17 23:23:27,118 epoch 1 - iter 704/886 - loss 0.17198943 - samples/sec: 438.19 - lr: 0.000050
2021-11-17 23:23:39,791 epoch 1 - iter 792/886 - loss 0.16499517 - samples/sec: 444.63 - lr: 0.000050
2021-11-17 23:23:52,506 epoch 1 - iter 880/886 - loss 0.15942326 - samples/sec: 443.19 - lr: 0.000050
2021-11-17 23:23:53,362 ----------------------------------------------------------------------------------------------------
2021-11-17 23:23:53,363 EPOCH 1 done: loss 0.1591 - lr 0.0000500
2021-11-17 23:24:06,817 DEV : loss 0.002542673610150814 - f1-score (micro avg) 0.9992
2021-11-17 23:24:06,902 BAD EPOCHS (no improvement): 0
2021-11-17 23:24:06,903 saving best model
2021-11-17 23:24:07,239 ----------------------------------------------------------------------------------------------------
2021-11-17 23:24:20,356 epoch 2 - iter 88/886 - loss 0.11000766 - samples/sec: 429.70 - lr: 0.000050
2021-11-17 23:24:33,380 epoch 2 - iter 176/886 - loss 0.10909856 - samples/sec: 432.73 - lr: 0.000050
2021-11-17 23:24:46,404 epoch 2 - iter 264/886 - loss 0.10926820 - samples/sec: 432.72 - lr: 0.000050
2021-11-17 23:24:59,233 epoch 2 - iter 352/886 - loss 0.10950969 - samples/sec: 439.32 - lr: 0.000050
2021-11-17 23:25:12,123 epoch 2 - iter 440/886 - loss 0.11018886 - samples/sec: 437.23 - lr: 0.000050
2021-11-17 23:25:25,126 epoch 2 - iter 528/886 - loss 0.10995752 - samples/sec: 433.43 - lr: 0.000050
2021-11-17 23:25:38,072 epoch 2 - iter 616/886 - loss 0.10983300 - samples/sec: 435.34 - lr: 0.000050
2021-11-17 23:25:51,102 epoch 2 - iter 704/886 - loss 0.10978674 - samples/sec: 432.51 - lr: 0.000050
2021-11-17 23:26:05,660 epoch 2 - iter 792/886 - loss 0.10974621 - samples/sec: 387.25 - lr: 0.000050
2021-11-17 23:26:19,108 epoch 2 - iter 880/886 - loss 0.10964924 - samples/sec: 419.09 - lr: 0.000050
2021-11-17 23:26:20,019 ----------------------------------------------------------------------------------------------------
2021-11-17 23:26:20,020 EPOCH 2 done: loss 0.1098 - lr 0.0000500
2021-11-17 23:26:34,470 DEV : loss 0.0029088123701512814 - f1-score (micro avg) 0.9988
2021-11-17 23:26:34,553 BAD EPOCHS (no improvement): 1
2021-11-17 23:26:34,553 ----------------------------------------------------------------------------------------------------
2021-11-17 23:26:47,966 epoch 3 - iter 88/886 - loss 0.11118611 - samples/sec: 420.23 - lr: 0.000050
2021-11-17 23:27:01,224 epoch 3 - iter 176/886 - loss 0.11113361 - samples/sec: 425.09 - lr: 0.000050
2021-11-17 23:27:14,454 epoch 3 - iter 264/886 - loss 0.11038604 - samples/sec: 426.17 - lr: 0.000050
2021-11-17 23:27:27,741 epoch 3 - iter 352/886 - loss 0.11138497 - samples/sec: 424.34 - lr: 0.000050
2021-11-17 23:27:40,811 epoch 3 - iter 440/886 - loss 0.11143778 - samples/sec: 431.20 - lr: 0.000050
2021-11-17 23:27:54,062 epoch 3 - iter 528/886 - loss 0.11093105 - samples/sec: 425.34 - lr: 0.000050
2021-11-17 23:28:07,198 epoch 3 - iter 616/886 - loss 0.11050488 - samples/sec: 429.21 - lr: 0.000050
2021-11-17 23:28:20,418 epoch 3 - iter 704/886 - loss 0.11064153 - samples/sec: 426.32 - lr: 0.000050
2021-11-17 23:28:33,690 epoch 3 - iter 792/886 - loss 0.11022304 - samples/sec: 424.79 - lr: 0.000050
2021-11-17 23:28:47,015 epoch 3 - iter 880/886 - loss 0.11054611 - samples/sec: 422.95 - lr: 0.000050
2021-11-17 23:28:47,991 ----------------------------------------------------------------------------------------------------
2021-11-17 23:28:47,992 EPOCH 3 done: loss 0.1105 - lr 0.0000500
2021-11-17 23:29:04,469 DEV : loss 0.0013118594652041793 - f1-score (micro avg) 0.9994
2021-11-17 23:29:04,549 BAD EPOCHS (no improvement): 0
2021-11-17 23:29:04,550 saving best model
2021-11-17 23:29:05,206 ----------------------------------------------------------------------------------------------------
2021-11-17 23:29:19,255 epoch 4 - iter 88/886 - loss 0.11101590 - samples/sec: 401.22 - lr: 0.000050
2021-11-17 23:29:33,081 epoch 4 - iter 176/886 - loss 0.10997834 - samples/sec: 407.62 - lr: 0.000050
2021-11-17 23:29:46,787 epoch 4 - iter 264/886 - loss 0.11031061 - samples/sec: 411.18 - lr: 0.000050
2021-11-17 23:30:00,054 epoch 4 - iter 352/886 - loss 0.10969025 - samples/sec: 424.81 - lr: 0.000050
2021-11-17 23:30:13,298 epoch 4 - iter 440/886 - loss 0.11001565 - samples/sec: 425.52 - lr: 0.000050
2021-11-17 23:30:26,545 epoch 4 - iter 528/886 - loss 0.11013209 - samples/sec: 425.45 - lr: 0.000050
2021-11-17 23:30:39,776 epoch 4 - iter 616/886 - loss 0.10980630 - samples/sec: 425.95 - lr: 0.000050
2021-11-17 23:30:52,924 epoch 4 - iter 704/886 - loss 0.10947482 - samples/sec: 428.65 - lr: 0.000050
2021-11-17 23:31:06,186 epoch 4 - iter 792/886 - loss 0.10976788 - samples/sec: 424.94 - lr: 0.000050
2021-11-17 23:31:19,571 epoch 4 - iter 880/886 - loss 0.10976014 - samples/sec: 421.06 - lr: 0.000050
2021-11-17 23:31:20,467 ----------------------------------------------------------------------------------------------------
2021-11-17 23:31:20,468 EPOCH 4 done: loss 0.1098 - lr 0.0000500
2021-11-17 23:31:36,227 DEV : loss 0.0019321050494909286 - f1-score (micro avg) 0.999
2021-11-17 23:31:36,311 BAD EPOCHS (no improvement): 1
2021-11-17 23:31:36,312 ----------------------------------------------------------------------------------------------------
2021-11-17 23:31:49,776 epoch 5 - iter 88/886 - loss 0.11196203 - samples/sec: 418.62 - lr: 0.000050
2021-11-17 23:32:03,347 epoch 5 - iter 176/886 - loss 0.11146165 - samples/sec: 415.27 - lr: 0.000050
2021-11-17 23:32:16,869 epoch 5 - iter 264/886 - loss 0.11038997 - samples/sec: 416.80 - lr: 0.000050
2021-11-17 23:32:30,210 epoch 5 - iter 352/886 - loss 0.10969957 - samples/sec: 422.45 - lr: 0.000050
2021-11-17 23:32:43,385 epoch 5 - iter 440/886 - loss 0.10883622 - samples/sec: 427.75 - lr: 0.000050
2021-11-17 23:32:57,014 epoch 5 - iter 528/886 - loss 0.10885199 - samples/sec: 413.52 - lr: 0.000050
2021-11-17 23:33:11,225 epoch 5 - iter 616/886 - loss 0.10919470 - samples/sec: 396.74 - lr: 0.000050
2021-11-17 23:33:25,329 epoch 5 - iter 704/886 - loss 0.10968561 - samples/sec: 399.65 - lr: 0.000050
2021-11-17 23:33:38,569 epoch 5 - iter 792/886 - loss 0.10952831 - samples/sec: 425.68 - lr: 0.000050
2021-11-17 23:33:51,869 epoch 5 - iter 880/886 - loss 0.10925988 - samples/sec: 423.91 - lr: 0.000050
2021-11-17 23:33:52,767 ----------------------------------------------------------------------------------------------------
2021-11-17 23:33:52,768 EPOCH 5 done: loss 0.1092 - lr 0.0000500
2021-11-17 23:34:08,633 DEV : loss 0.001400615437887609 - f1-score (micro avg) 0.9994
2021-11-17 23:34:08,713 BAD EPOCHS (no improvement): 2
2021-11-17 23:34:08,716 ----------------------------------------------------------------------------------------------------
2021-11-17 23:34:22,104 epoch 6 - iter 88/886 - loss 0.10971184 - samples/sec: 421.02 - lr: 0.000050
2021-11-17 23:34:35,452 epoch 6 - iter 176/886 - loss 0.10810577 - samples/sec: 422.40 - lr: 0.000050
2021-11-17 23:34:48,789 epoch 6 - iter 264/886 - loss 0.10923295 - samples/sec: 422.58 - lr: 0.000050
2021-11-17 23:35:02,187 epoch 6 - iter 352/886 - loss 0.10832324 - samples/sec: 420.62 - lr: 0.000050
2021-11-17 23:35:15,501 epoch 6 - iter 440/886 - loss 0.10890621 - samples/sec: 423.47 - lr: 0.000050
2021-11-17 23:35:28,932 epoch 6 - iter 528/886 - loss 0.10836666 - samples/sec: 419.60 - lr: 0.000050
2021-11-17 23:35:42,421 epoch 6 - iter 616/886 - loss 0.10866986 - samples/sec: 417.83 - lr: 0.000050
2021-11-17 23:35:56,321 epoch 6 - iter 704/886 - loss 0.10845591 - samples/sec: 405.45 - lr: 0.000050
2021-11-17 23:36:10,189 epoch 6 - iter 792/886 - loss 0.10875052 - samples/sec: 406.44 - lr: 0.000050
2021-11-17 23:36:23,804 epoch 6 - iter 880/886 - loss 0.10904969 - samples/sec: 413.93 - lr: 0.000050
2021-11-17 23:36:24,703 ----------------------------------------------------------------------------------------------------
2021-11-17 23:36:24,704 EPOCH 6 done: loss 0.1092 - lr 0.0000500
2021-11-17 23:36:40,380 DEV : loss 0.0009049061918631196 - f1-score (micro avg) 0.9992
2021-11-17 23:36:40,463 BAD EPOCHS (no improvement): 3
2021-11-17 23:36:40,463 ----------------------------------------------------------------------------------------------------
2021-11-17 23:36:54,014 epoch 7 - iter 88/886 - loss 0.11094486 - samples/sec: 415.95 - lr: 0.000050
2021-11-17 23:37:07,422 epoch 7 - iter 176/886 - loss 0.10949810 - samples/sec: 420.52 - lr: 0.000050
2021-11-17 23:37:21,230 epoch 7 - iter 264/886 - loss 0.10970254 - samples/sec: 408.14 - lr: 0.000050
2021-11-17 23:37:34,444 epoch 7 - iter 352/886 - loss 0.11019445 - samples/sec: 426.59 - lr: 0.000050
2021-11-17 23:37:47,833 epoch 7 - iter 440/886 - loss 0.11044571 - samples/sec: 420.94 - lr: 0.000050
2021-11-17 23:38:01,118 epoch 7 - iter 528/886 - loss 0.11022272 - samples/sec: 424.19 - lr: 0.000050
2021-11-17 23:38:14,537 epoch 7 - iter 616/886 - loss 0.10975761 - samples/sec: 420.00 - lr: 0.000050
2021-11-17 23:38:27,909 epoch 7 - iter 704/886 - loss 0.10944174 - samples/sec: 421.63 - lr: 0.000050
2021-11-17 23:38:41,133 epoch 7 - iter 792/886 - loss 0.10960931 - samples/sec: 426.17 - lr: 0.000050
2021-11-17 23:38:54,481 epoch 7 - iter 880/886 - loss 0.10960868 - samples/sec: 422.22 - lr: 0.000050
2021-11-17 23:38:55,367 ----------------------------------------------------------------------------------------------------
2021-11-17 23:38:55,368 EPOCH 7 done: loss 0.1096 - lr 0.0000500
2021-11-17 23:39:11,689 DEV : loss 0.0013050935231149197 - f1-score (micro avg) 0.9995
2021-11-17 23:39:11,770 BAD EPOCHS (no improvement): 0
2021-11-17 23:39:11,773 saving best model
2021-11-17 23:39:12,423 ----------------------------------------------------------------------------------------------------
2021-11-17 23:39:26,468 epoch 8 - iter 88/886 - loss 0.11104233 - samples/sec: 401.32 - lr: 0.000050
2021-11-17 23:39:40,269 epoch 8 - iter 176/886 - loss 0.11088406 - samples/sec: 408.36 - lr: 0.000050
2021-11-17 23:39:53,968 epoch 8 - iter 264/886 - loss 0.11062941 - samples/sec: 411.41 - lr: 0.000050
2021-11-17 23:40:07,630 epoch 8 - iter 352/886 - loss 0.11052519 - samples/sec: 412.67 - lr: 0.000050
2021-11-17 23:40:21,700 epoch 8 - iter 440/886 - loss 0.10981883 - samples/sec: 400.57 - lr: 0.000050
2021-11-17 23:40:35,699 epoch 8 - iter 528/886 - loss 0.10959840 - samples/sec: 402.57 - lr: 0.000050
2021-11-17 23:40:49,510 epoch 8 - iter 616/886 - loss 0.10968087 - samples/sec: 408.23 - lr: 0.000050
2021-11-17 23:41:03,430 epoch 8 - iter 704/886 - loss 0.10975513 - samples/sec: 404.86 - lr: 0.000050
2021-11-17 23:41:17,719 epoch 8 - iter 792/886 - loss 0.10979006 - samples/sec: 394.41 - lr: 0.000050
2021-11-17 23:41:32,411 epoch 8 - iter 880/886 - loss 0.10979431 - samples/sec: 383.61 - lr: 0.000050
2021-11-17 23:41:33,357 ----------------------------------------------------------------------------------------------------
2021-11-17 23:41:33,358 EPOCH 8 done: loss 0.1098 - lr 0.0000500
2021-11-17 23:41:50,962 DEV : loss 0.0015213226433843374 - f1-score (micro avg) 0.9993
2021-11-17 23:41:51,053 BAD EPOCHS (no improvement): 1
2021-11-17 23:41:51,466 ----------------------------------------------------------------------------------------------------
2021-11-17 23:41:51,467 loading file training/flair_ner/en/17112021_231902/best-model.pt
2021-11-17 23:42:09,058 0.9993 0.9993 0.9993 0.9993
2021-11-17 23:42:09,064
Results:
- F-score (micro) 0.9993
- F-score (macro) 0.9992
- Accuracy 0.9993
By class:
precision recall f1-score support
nb_rounds 0.9999 0.9981 0.9990 6889
duration_wt_sd 1.0000 1.0000 1.0000 3292
duration_br_min 0.9975 1.0000 0.9988 3239
duration_wt_min 1.0000 1.0000 1.0000 2685
duration_br_sd 0.9981 0.9995 0.9988 2068
duration_wt_hr 1.0000 1.0000 1.0000 1023
duration_br_hr 0.9957 1.0000 0.9978 230
micro avg 0.9993 0.9993 0.9993 19426
macro avg 0.9987 0.9997 0.9992 19426
weighted avg 0.9993 0.9993 0.9993 19426
samples avg 0.9993 0.9993 0.9993 19426
2021-11-17 23:42:09,065 ----------------------------------------------------------------------------------------------------
|