init
Browse files- README.md +32 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- pytorch_model.bin +3 -0
- test.tsv +0 -0
- training.log +364 -0
README.md
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- flair
|
4 |
+
- token-classification
|
5 |
+
- sequence-tagger-model
|
6 |
+
language: en
|
7 |
+
widget:
|
8 |
+
- text: "12 sets of 2 minutes 38 minutes between each set"
|
9 |
+
|
10 |
+
---
|
11 |
+
|
12 |
+
7-class NER English model using [Flair TransformerWordEmbeddings - distilroberta-base](https://github.com/flairNLP/flair/).
|
13 |
+
|
14 |
+
| **tag** | **meaning** |
|
15 |
+
|---------------------------------|-----------|
|
16 |
+
| nb_rounds | Number of rounds |
|
17 |
+
| duration_br_sd | Duration btwn rounds in seconds |
|
18 |
+
| duration_br_min | Duration btwn rounds in minutes |
|
19 |
+
| duration_br_hr | Duration btwn rounds in hours |
|
20 |
+
| duration_wt_sd | workout duration in seconds |
|
21 |
+
| duration_wt_min | workout duration in minutes |
|
22 |
+
| duration_wt_hr | workout duration in hours |
|
23 |
+
---
|
24 |
+
The dataset was created manually (perfectible). Sentences example :
|
25 |
+
```
|
26 |
+
19 sets of 3 minutes 21 minutes between sets
|
27 |
+
start 7 sets of 32 seconds
|
28 |
+
create 13 sets of 26 seconds
|
29 |
+
init 8 series of 3 hours
|
30 |
+
2 sets of 30 seconds 35 minutes between each cycle
|
31 |
+
...
|
32 |
+
```
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 15:37:11 0 0.0001 0.16075978090894327 0.0029305333737283945 0.9992 0.9992 0.9992 0.9992
|
3 |
+
2 15:39:39 0 0.0001 0.11129908844900666 0.0013541270745918155 0.9992 0.9992 0.9992 0.9992
|
4 |
+
3 15:42:09 1 0.0001 0.11176801912461394 0.0017125594895333052 0.9992 0.9992 0.9992 0.9992
|
5 |
+
4 15:44:39 2 0.0001 0.11077808575201452 0.0035813269205391407 0.9992 0.9992 0.9992 0.9992
|
6 |
+
5 15:47:07 0 0.0001 0.10987376058836824 0.0010140719823539257 0.9995 0.9995 0.9995 0.9995
|
7 |
+
6 15:49:35 1 0.0001 0.10985530377211841 0.0014548080507665873 0.9993 0.9993 0.9993 0.9993
|
8 |
+
7 15:52:04 2 0.0001 0.11081814550640288 0.0011286081280559301 0.9994 0.9994 0.9994 0.9994
|
9 |
+
8 15:54:33 0 0.0001 0.1101565688396648 0.0014515728689730167 0.9995 0.9995 0.9995 0.9995
|
10 |
+
9 15:57:02 1 0.0001 0.11015787282151847 0.0028099738992750645 0.9994 0.9994 0.9994 0.9994
|
11 |
+
10 15:59:31 2 0.0001 0.1096125644685161 0.004609304014593363 0.9993 0.9993 0.9993 0.9993
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6178fe753987ccc16cf513c1d15ab22cd01d29eadcfa580549d99aaa771b7840
|
3 |
+
size 338076137
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2021-11-17 15:34:49,923 ----------------------------------------------------------------------------------------------------
|
2 |
+
2021-11-17 15:34:49,924 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): RobertaModel(
|
5 |
+
(embeddings): RobertaEmbeddings(
|
6 |
+
(word_embeddings): Embedding(50265, 768, padding_idx=1)
|
7 |
+
(position_embeddings): Embedding(514, 768, padding_idx=1)
|
8 |
+
(token_type_embeddings): Embedding(1, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): RobertaEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): RobertaLayer(
|
15 |
+
(attention): RobertaAttention(
|
16 |
+
(self): RobertaSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): RobertaSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): RobertaIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
)
|
31 |
+
(output): RobertaOutput(
|
32 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
33 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
34 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
35 |
+
)
|
36 |
+
)
|
37 |
+
(1): RobertaLayer(
|
38 |
+
(attention): RobertaAttention(
|
39 |
+
(self): RobertaSelfAttention(
|
40 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
41 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
44 |
+
)
|
45 |
+
(output): RobertaSelfOutput(
|
46 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
47 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
48 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
49 |
+
)
|
50 |
+
)
|
51 |
+
(intermediate): RobertaIntermediate(
|
52 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
53 |
+
)
|
54 |
+
(output): RobertaOutput(
|
55 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
56 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
57 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
58 |
+
)
|
59 |
+
)
|
60 |
+
(2): RobertaLayer(
|
61 |
+
(attention): RobertaAttention(
|
62 |
+
(self): RobertaSelfAttention(
|
63 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
64 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
65 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
67 |
+
)
|
68 |
+
(output): RobertaSelfOutput(
|
69 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
70 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
71 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
72 |
+
)
|
73 |
+
)
|
74 |
+
(intermediate): RobertaIntermediate(
|
75 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
76 |
+
)
|
77 |
+
(output): RobertaOutput(
|
78 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
79 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
80 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
81 |
+
)
|
82 |
+
)
|
83 |
+
(3): RobertaLayer(
|
84 |
+
(attention): RobertaAttention(
|
85 |
+
(self): RobertaSelfAttention(
|
86 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
87 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
88 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
89 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
90 |
+
)
|
91 |
+
(output): RobertaSelfOutput(
|
92 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
93 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
94 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
95 |
+
)
|
96 |
+
)
|
97 |
+
(intermediate): RobertaIntermediate(
|
98 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
99 |
+
)
|
100 |
+
(output): RobertaOutput(
|
101 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
102 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
103 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
104 |
+
)
|
105 |
+
)
|
106 |
+
(4): RobertaLayer(
|
107 |
+
(attention): RobertaAttention(
|
108 |
+
(self): RobertaSelfAttention(
|
109 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
110 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
111 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
112 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
113 |
+
)
|
114 |
+
(output): RobertaSelfOutput(
|
115 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
117 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
118 |
+
)
|
119 |
+
)
|
120 |
+
(intermediate): RobertaIntermediate(
|
121 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
122 |
+
)
|
123 |
+
(output): RobertaOutput(
|
124 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
125 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
126 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
127 |
+
)
|
128 |
+
)
|
129 |
+
(5): RobertaLayer(
|
130 |
+
(attention): RobertaAttention(
|
131 |
+
(self): RobertaSelfAttention(
|
132 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
133 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
134 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
135 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
136 |
+
)
|
137 |
+
(output): RobertaSelfOutput(
|
138 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
)
|
143 |
+
(intermediate): RobertaIntermediate(
|
144 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
145 |
+
)
|
146 |
+
(output): RobertaOutput(
|
147 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
148 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
149 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
150 |
+
)
|
151 |
+
)
|
152 |
+
)
|
153 |
+
)
|
154 |
+
(pooler): RobertaPooler(
|
155 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
156 |
+
(activation): Tanh()
|
157 |
+
)
|
158 |
+
)
|
159 |
+
)
|
160 |
+
(word_dropout): WordDropout(p=0.05)
|
161 |
+
(locked_dropout): LockedDropout(p=0.5)
|
162 |
+
(embedding2nn): Linear(in_features=1536, out_features=1536, bias=True)
|
163 |
+
(linear): Linear(in_features=1536, out_features=16, bias=True)
|
164 |
+
(beta): 1.0
|
165 |
+
(weights): None
|
166 |
+
(weight_tensor) None
|
167 |
+
)"
|
168 |
+
2021-11-17 15:34:49,924 ----------------------------------------------------------------------------------------------------
|
169 |
+
2021-11-17 15:34:49,925 Corpus: "Corpus: 56700 train + 6300 dev + 7000 test sentences"
|
170 |
+
2021-11-17 15:34:49,925 ----------------------------------------------------------------------------------------------------
|
171 |
+
2021-11-17 15:34:49,926 Parameters:
|
172 |
+
2021-11-17 15:34:49,926 - learning_rate: "5e-05"
|
173 |
+
2021-11-17 15:34:49,926 - mini_batch_size: "64"
|
174 |
+
2021-11-17 15:34:49,926 - patience: "3"
|
175 |
+
2021-11-17 15:34:49,927 - anneal_factor: "0.5"
|
176 |
+
2021-11-17 15:34:49,927 - max_epochs: "10"
|
177 |
+
2021-11-17 15:34:49,927 - shuffle: "True"
|
178 |
+
2021-11-17 15:34:49,928 - train_with_dev: "False"
|
179 |
+
2021-11-17 15:34:49,928 - batch_growth_annealing: "False"
|
180 |
+
2021-11-17 15:34:49,928 ----------------------------------------------------------------------------------------------------
|
181 |
+
2021-11-17 15:34:49,929 Model training base path: "training/flair_ner/17112021_152905"
|
182 |
+
2021-11-17 15:34:49,930 ----------------------------------------------------------------------------------------------------
|
183 |
+
2021-11-17 15:34:49,930 Device: cuda
|
184 |
+
2021-11-17 15:34:49,931 ----------------------------------------------------------------------------------------------------
|
185 |
+
2021-11-17 15:34:49,931 Embeddings storage mode: cpu
|
186 |
+
2021-11-17 15:34:49,933 ----------------------------------------------------------------------------------------------------
|
187 |
+
2021-11-17 15:35:02,874 epoch 1 - iter 88/886 - loss 0.50644155 - samples/sec: 435.49 - lr: 0.000050
|
188 |
+
2021-11-17 15:35:15,686 epoch 1 - iter 176/886 - loss 0.32420832 - samples/sec: 439.83 - lr: 0.000050
|
189 |
+
2021-11-17 15:35:28,472 epoch 1 - iter 264/886 - loss 0.25984089 - samples/sec: 440.71 - lr: 0.000050
|
190 |
+
2021-11-17 15:35:41,245 epoch 1 - iter 352/886 - loss 0.22670251 - samples/sec: 441.16 - lr: 0.000050
|
191 |
+
2021-11-17 15:35:54,419 epoch 1 - iter 440/886 - loss 0.20579280 - samples/sec: 427.72 - lr: 0.000050
|
192 |
+
2021-11-17 15:36:07,202 epoch 1 - iter 528/886 - loss 0.19081105 - samples/sec: 440.90 - lr: 0.000050
|
193 |
+
2021-11-17 15:36:19,841 epoch 1 - iter 616/886 - loss 0.18055071 - samples/sec: 445.85 - lr: 0.000050
|
194 |
+
2021-11-17 15:36:32,361 epoch 1 - iter 704/886 - loss 0.17219026 - samples/sec: 450.10 - lr: 0.000050
|
195 |
+
2021-11-17 15:36:45,001 epoch 1 - iter 792/886 - loss 0.16603222 - samples/sec: 445.79 - lr: 0.000050
|
196 |
+
2021-11-17 15:36:57,735 epoch 1 - iter 880/886 - loss 0.16102375 - samples/sec: 442.72 - lr: 0.000050
|
197 |
+
2021-11-17 15:36:58,592 ----------------------------------------------------------------------------------------------------
|
198 |
+
2021-11-17 15:36:58,593 EPOCH 1 done: loss 0.1608 - lr 0.0000500
|
199 |
+
2021-11-17 15:37:11,841 DEV : loss 0.0029305333737283945 - f1-score (micro avg) 0.9992
|
200 |
+
2021-11-17 15:37:11,924 BAD EPOCHS (no improvement): 0
|
201 |
+
2021-11-17 15:37:11,924 saving best model
|
202 |
+
2021-11-17 15:37:12,293 ----------------------------------------------------------------------------------------------------
|
203 |
+
2021-11-17 15:37:25,475 epoch 2 - iter 88/886 - loss 0.11026321 - samples/sec: 427.67 - lr: 0.000050
|
204 |
+
2021-11-17 15:37:38,477 epoch 2 - iter 176/886 - loss 0.11169786 - samples/sec: 433.62 - lr: 0.000050
|
205 |
+
2021-11-17 15:37:51,386 epoch 2 - iter 264/886 - loss 0.11076006 - samples/sec: 436.59 - lr: 0.000050
|
206 |
+
2021-11-17 15:38:04,316 epoch 2 - iter 352/886 - loss 0.11026275 - samples/sec: 435.86 - lr: 0.000050
|
207 |
+
2021-11-17 15:38:17,224 epoch 2 - iter 440/886 - loss 0.11058185 - samples/sec: 436.60 - lr: 0.000050
|
208 |
+
2021-11-17 15:38:30,171 epoch 2 - iter 528/886 - loss 0.11105888 - samples/sec: 435.31 - lr: 0.000050
|
209 |
+
2021-11-17 15:38:43,248 epoch 2 - iter 616/886 - loss 0.11093445 - samples/sec: 431.17 - lr: 0.000050
|
210 |
+
2021-11-17 15:38:56,137 epoch 2 - iter 704/886 - loss 0.11079835 - samples/sec: 437.26 - lr: 0.000050
|
211 |
+
2021-11-17 15:39:09,395 epoch 2 - iter 792/886 - loss 0.11148766 - samples/sec: 425.17 - lr: 0.000050
|
212 |
+
2021-11-17 15:39:22,450 epoch 2 - iter 880/886 - loss 0.11140394 - samples/sec: 431.78 - lr: 0.000050
|
213 |
+
2021-11-17 15:39:23,318 ----------------------------------------------------------------------------------------------------
|
214 |
+
2021-11-17 15:39:23,318 EPOCH 2 done: loss 0.1113 - lr 0.0000500
|
215 |
+
2021-11-17 15:39:39,217 DEV : loss 0.0013541270745918155 - f1-score (micro avg) 0.9992
|
216 |
+
2021-11-17 15:39:39,304 BAD EPOCHS (no improvement): 0
|
217 |
+
2021-11-17 15:39:39,305 ----------------------------------------------------------------------------------------------------
|
218 |
+
2021-11-17 15:39:52,661 epoch 3 - iter 88/886 - loss 0.10886323 - samples/sec: 422.03 - lr: 0.000050
|
219 |
+
2021-11-17 15:40:05,912 epoch 3 - iter 176/886 - loss 0.10787832 - samples/sec: 425.49 - lr: 0.000050
|
220 |
+
2021-11-17 15:40:19,212 epoch 3 - iter 264/886 - loss 0.11035842 - samples/sec: 423.74 - lr: 0.000050
|
221 |
+
2021-11-17 15:40:32,505 epoch 3 - iter 352/886 - loss 0.11104986 - samples/sec: 424.15 - lr: 0.000050
|
222 |
+
2021-11-17 15:40:45,782 epoch 3 - iter 440/886 - loss 0.11091610 - samples/sec: 424.49 - lr: 0.000050
|
223 |
+
2021-11-17 15:40:59,163 epoch 3 - iter 528/886 - loss 0.11110444 - samples/sec: 421.17 - lr: 0.000050
|
224 |
+
2021-11-17 15:41:12,392 epoch 3 - iter 616/886 - loss 0.11146392 - samples/sec: 426.23 - lr: 0.000050
|
225 |
+
2021-11-17 15:41:25,673 epoch 3 - iter 704/886 - loss 0.11154272 - samples/sec: 424.34 - lr: 0.000050
|
226 |
+
2021-11-17 15:41:38,940 epoch 3 - iter 792/886 - loss 0.11160924 - samples/sec: 424.88 - lr: 0.000050
|
227 |
+
2021-11-17 15:41:52,243 epoch 3 - iter 880/886 - loss 0.11176415 - samples/sec: 423.61 - lr: 0.000050
|
228 |
+
2021-11-17 15:41:53,139 ----------------------------------------------------------------------------------------------------
|
229 |
+
2021-11-17 15:41:53,141 EPOCH 3 done: loss 0.1118 - lr 0.0000500
|
230 |
+
2021-11-17 15:42:09,290 DEV : loss 0.0017125594895333052 - f1-score (micro avg) 0.9992
|
231 |
+
2021-11-17 15:42:09,373 BAD EPOCHS (no improvement): 1
|
232 |
+
2021-11-17 15:42:09,374 ----------------------------------------------------------------------------------------------------
|
233 |
+
2021-11-17 15:42:22,858 epoch 4 - iter 88/886 - loss 0.10978185 - samples/sec: 418.00 - lr: 0.000050
|
234 |
+
2021-11-17 15:42:36,074 epoch 4 - iter 176/886 - loss 0.10973528 - samples/sec: 426.43 - lr: 0.000050
|
235 |
+
2021-11-17 15:42:49,423 epoch 4 - iter 264/886 - loss 0.11060583 - samples/sec: 422.19 - lr: 0.000050
|
236 |
+
2021-11-17 15:43:02,798 epoch 4 - iter 352/886 - loss 0.11082956 - samples/sec: 421.55 - lr: 0.000050
|
237 |
+
2021-11-17 15:43:16,118 epoch 4 - iter 440/886 - loss 0.11054231 - samples/sec: 423.16 - lr: 0.000050
|
238 |
+
2021-11-17 15:43:29,471 epoch 4 - iter 528/886 - loss 0.11108359 - samples/sec: 422.07 - lr: 0.000050
|
239 |
+
2021-11-17 15:43:42,869 epoch 4 - iter 616/886 - loss 0.11117851 - samples/sec: 420.64 - lr: 0.000050
|
240 |
+
2021-11-17 15:43:56,526 epoch 4 - iter 704/886 - loss 0.11137181 - samples/sec: 412.67 - lr: 0.000050
|
241 |
+
2021-11-17 15:44:10,054 epoch 4 - iter 792/886 - loss 0.11142306 - samples/sec: 416.60 - lr: 0.000050
|
242 |
+
2021-11-17 15:44:23,264 epoch 4 - iter 880/886 - loss 0.11088636 - samples/sec: 426.62 - lr: 0.000050
|
243 |
+
2021-11-17 15:44:24,146 ----------------------------------------------------------------------------------------------------
|
244 |
+
2021-11-17 15:44:24,146 EPOCH 4 done: loss 0.1108 - lr 0.0000500
|
245 |
+
2021-11-17 15:44:39,706 DEV : loss 0.0035813269205391407 - f1-score (micro avg) 0.9992
|
246 |
+
2021-11-17 15:44:39,791 BAD EPOCHS (no improvement): 2
|
247 |
+
2021-11-17 15:44:39,791 ----------------------------------------------------------------------------------------------------
|
248 |
+
2021-11-17 15:44:53,041 epoch 5 - iter 88/886 - loss 0.10802392 - samples/sec: 425.46 - lr: 0.000050
|
249 |
+
2021-11-17 15:45:06,325 epoch 5 - iter 176/886 - loss 0.10760262 - samples/sec: 424.24 - lr: 0.000050
|
250 |
+
2021-11-17 15:45:19,569 epoch 5 - iter 264/886 - loss 0.10806256 - samples/sec: 425.73 - lr: 0.000050
|
251 |
+
2021-11-17 15:45:32,761 epoch 5 - iter 352/886 - loss 0.10865681 - samples/sec: 427.42 - lr: 0.000050
|
252 |
+
2021-11-17 15:45:45,855 epoch 5 - iter 440/886 - loss 0.10912184 - samples/sec: 430.61 - lr: 0.000050
|
253 |
+
2021-11-17 15:45:59,034 epoch 5 - iter 528/886 - loss 0.10891177 - samples/sec: 427.65 - lr: 0.000050
|
254 |
+
2021-11-17 15:46:12,303 epoch 5 - iter 616/886 - loss 0.10963959 - samples/sec: 424.90 - lr: 0.000050
|
255 |
+
2021-11-17 15:46:25,367 epoch 5 - iter 704/886 - loss 0.10977588 - samples/sec: 431.42 - lr: 0.000050
|
256 |
+
2021-11-17 15:46:38,535 epoch 5 - iter 792/886 - loss 0.10983991 - samples/sec: 427.99 - lr: 0.000050
|
257 |
+
2021-11-17 15:46:52,036 epoch 5 - iter 880/886 - loss 0.10983081 - samples/sec: 417.44 - lr: 0.000050
|
258 |
+
2021-11-17 15:46:52,981 ----------------------------------------------------------------------------------------------------
|
259 |
+
2021-11-17 15:46:52,981 EPOCH 5 done: loss 0.1099 - lr 0.0000500
|
260 |
+
2021-11-17 15:47:07,506 DEV : loss 0.0010140719823539257 - f1-score (micro avg) 0.9995
|
261 |
+
2021-11-17 15:47:07,591 BAD EPOCHS (no improvement): 0
|
262 |
+
2021-11-17 15:47:07,592 saving best model
|
263 |
+
2021-11-17 15:47:08,183 ----------------------------------------------------------------------------------------------------
|
264 |
+
2021-11-17 15:47:21,511 epoch 6 - iter 88/886 - loss 0.10567650 - samples/sec: 422.90 - lr: 0.000050
|
265 |
+
2021-11-17 15:47:34,509 epoch 6 - iter 176/886 - loss 0.10887869 - samples/sec: 433.61 - lr: 0.000050
|
266 |
+
2021-11-17 15:47:47,528 epoch 6 - iter 264/886 - loss 0.10842350 - samples/sec: 432.88 - lr: 0.000050
|
267 |
+
2021-11-17 15:48:00,526 epoch 6 - iter 352/886 - loss 0.10983462 - samples/sec: 433.80 - lr: 0.000050
|
268 |
+
2021-11-17 15:48:13,643 epoch 6 - iter 440/886 - loss 0.10883770 - samples/sec: 429.63 - lr: 0.000050
|
269 |
+
2021-11-17 15:48:26,632 epoch 6 - iter 528/886 - loss 0.10926475 - samples/sec: 434.11 - lr: 0.000050
|
270 |
+
2021-11-17 15:48:39,864 epoch 6 - iter 616/886 - loss 0.10987226 - samples/sec: 425.93 - lr: 0.000050
|
271 |
+
2021-11-17 15:48:52,954 epoch 6 - iter 704/886 - loss 0.11003466 - samples/sec: 430.54 - lr: 0.000050
|
272 |
+
2021-11-17 15:49:06,114 epoch 6 - iter 792/886 - loss 0.11000339 - samples/sec: 428.26 - lr: 0.000050
|
273 |
+
2021-11-17 15:49:19,283 epoch 6 - iter 880/886 - loss 0.10986999 - samples/sec: 427.94 - lr: 0.000050
|
274 |
+
2021-11-17 15:49:20,160 ----------------------------------------------------------------------------------------------------
|
275 |
+
2021-11-17 15:49:20,161 EPOCH 6 done: loss 0.1099 - lr 0.0000500
|
276 |
+
2021-11-17 15:49:35,569 DEV : loss 0.0014548080507665873 - f1-score (micro avg) 0.9993
|
277 |
+
2021-11-17 15:49:35,652 BAD EPOCHS (no improvement): 1
|
278 |
+
2021-11-17 15:49:35,653 ----------------------------------------------------------------------------------------------------
|
279 |
+
2021-11-17 15:49:48,878 epoch 7 - iter 88/886 - loss 0.10951206 - samples/sec: 426.18 - lr: 0.000050
|
280 |
+
2021-11-17 15:50:01,971 epoch 7 - iter 176/886 - loss 0.11032338 - samples/sec: 430.47 - lr: 0.000050
|
281 |
+
2021-11-17 15:50:15,172 epoch 7 - iter 264/886 - loss 0.11045747 - samples/sec: 426.91 - lr: 0.000050
|
282 |
+
2021-11-17 15:50:28,317 epoch 7 - iter 352/886 - loss 0.11071942 - samples/sec: 428.73 - lr: 0.000050
|
283 |
+
2021-11-17 15:50:41,502 epoch 7 - iter 440/886 - loss 0.11000396 - samples/sec: 427.62 - lr: 0.000050
|
284 |
+
2021-11-17 15:50:54,735 epoch 7 - iter 528/886 - loss 0.11036286 - samples/sec: 425.91 - lr: 0.000050
|
285 |
+
2021-11-17 15:51:08,179 epoch 7 - iter 616/886 - loss 0.11044996 - samples/sec: 419.40 - lr: 0.000050
|
286 |
+
2021-11-17 15:51:21,435 epoch 7 - iter 704/886 - loss 0.11062300 - samples/sec: 425.15 - lr: 0.000050
|
287 |
+
2021-11-17 15:51:34,569 epoch 7 - iter 792/886 - loss 0.11050441 - samples/sec: 429.10 - lr: 0.000050
|
288 |
+
2021-11-17 15:51:47,616 epoch 7 - iter 880/886 - loss 0.11081751 - samples/sec: 432.02 - lr: 0.000050
|
289 |
+
2021-11-17 15:51:48,504 ----------------------------------------------------------------------------------------------------
|
290 |
+
2021-11-17 15:51:48,504 EPOCH 7 done: loss 0.1108 - lr 0.0000500
|
291 |
+
2021-11-17 15:52:04,138 DEV : loss 0.0011286081280559301 - f1-score (micro avg) 0.9994
|
292 |
+
2021-11-17 15:52:04,221 BAD EPOCHS (no improvement): 2
|
293 |
+
2021-11-17 15:52:04,221 ----------------------------------------------------------------------------------------------------
|
294 |
+
2021-11-17 15:52:17,523 epoch 8 - iter 88/886 - loss 0.10894525 - samples/sec: 423.73 - lr: 0.000050
|
295 |
+
2021-11-17 15:52:30,625 epoch 8 - iter 176/886 - loss 0.11013192 - samples/sec: 430.14 - lr: 0.000050
|
296 |
+
2021-11-17 15:52:43,834 epoch 8 - iter 264/886 - loss 0.11008158 - samples/sec: 426.69 - lr: 0.000050
|
297 |
+
2021-11-17 15:52:57,028 epoch 8 - iter 352/886 - loss 0.11060585 - samples/sec: 427.15 - lr: 0.000050
|
298 |
+
2021-11-17 15:53:10,298 epoch 8 - iter 440/886 - loss 0.11058677 - samples/sec: 424.70 - lr: 0.000050
|
299 |
+
2021-11-17 15:53:23,599 epoch 8 - iter 528/886 - loss 0.11039821 - samples/sec: 423.70 - lr: 0.000050
|
300 |
+
2021-11-17 15:53:36,716 epoch 8 - iter 616/886 - loss 0.11030582 - samples/sec: 429.67 - lr: 0.000050
|
301 |
+
2021-11-17 15:53:49,982 epoch 8 - iter 704/886 - loss 0.10977816 - samples/sec: 424.83 - lr: 0.000050
|
302 |
+
2021-11-17 15:54:03,181 epoch 8 - iter 792/886 - loss 0.11012337 - samples/sec: 426.98 - lr: 0.000050
|
303 |
+
2021-11-17 15:54:16,462 epoch 8 - iter 880/886 - loss 0.11017103 - samples/sec: 424.37 - lr: 0.000050
|
304 |
+
2021-11-17 15:54:17,329 ----------------------------------------------------------------------------------------------------
|
305 |
+
2021-11-17 15:54:17,329 EPOCH 8 done: loss 0.1102 - lr 0.0000500
|
306 |
+
2021-11-17 15:54:32,948 DEV : loss 0.0014515728689730167 - f1-score (micro avg) 0.9995
|
307 |
+
2021-11-17 15:54:33,031 BAD EPOCHS (no improvement): 0
|
308 |
+
2021-11-17 15:54:33,032 saving best model
|
309 |
+
2021-11-17 15:54:33,637 ----------------------------------------------------------------------------------------------------
|
310 |
+
2021-11-17 15:54:46,858 epoch 9 - iter 88/886 - loss 0.10922566 - samples/sec: 426.35 - lr: 0.000050
|
311 |
+
2021-11-17 15:54:59,965 epoch 9 - iter 176/886 - loss 0.11082640 - samples/sec: 429.99 - lr: 0.000050
|
312 |
+
2021-11-17 15:55:13,176 epoch 9 - iter 264/886 - loss 0.11164660 - samples/sec: 426.60 - lr: 0.000050
|
313 |
+
2021-11-17 15:55:26,289 epoch 9 - iter 352/886 - loss 0.11113663 - samples/sec: 429.99 - lr: 0.000050
|
314 |
+
2021-11-17 15:55:40,047 epoch 9 - iter 440/886 - loss 0.11075153 - samples/sec: 409.63 - lr: 0.000050
|
315 |
+
2021-11-17 15:55:53,772 epoch 9 - iter 528/886 - loss 0.11070955 - samples/sec: 410.63 - lr: 0.000050
|
316 |
+
2021-11-17 15:56:07,050 epoch 9 - iter 616/886 - loss 0.11027549 - samples/sec: 424.44 - lr: 0.000050
|
317 |
+
2021-11-17 15:56:20,322 epoch 9 - iter 704/886 - loss 0.11003220 - samples/sec: 424.64 - lr: 0.000050
|
318 |
+
2021-11-17 15:56:33,497 epoch 9 - iter 792/886 - loss 0.10976900 - samples/sec: 427.78 - lr: 0.000050
|
319 |
+
2021-11-17 15:56:46,751 epoch 9 - iter 880/886 - loss 0.11015739 - samples/sec: 425.22 - lr: 0.000050
|
320 |
+
2021-11-17 15:56:47,659 ----------------------------------------------------------------------------------------------------
|
321 |
+
2021-11-17 15:56:47,660 EPOCH 9 done: loss 0.1102 - lr 0.0000500
|
322 |
+
2021-11-17 15:57:02,117 DEV : loss 0.0028099738992750645 - f1-score (micro avg) 0.9994
|
323 |
+
2021-11-17 15:57:02,205 BAD EPOCHS (no improvement): 1
|
324 |
+
2021-11-17 15:57:02,206 ----------------------------------------------------------------------------------------------------
|
325 |
+
2021-11-17 15:57:15,740 epoch 10 - iter 88/886 - loss 0.11323596 - samples/sec: 416.50 - lr: 0.000050
|
326 |
+
2021-11-17 15:57:28,942 epoch 10 - iter 176/886 - loss 0.11324876 - samples/sec: 426.89 - lr: 0.000050
|
327 |
+
2021-11-17 15:57:42,141 epoch 10 - iter 264/886 - loss 0.11189004 - samples/sec: 426.98 - lr: 0.000050
|
328 |
+
2021-11-17 15:57:55,416 epoch 10 - iter 352/886 - loss 0.11062028 - samples/sec: 424.72 - lr: 0.000050
|
329 |
+
2021-11-17 15:58:08,673 epoch 10 - iter 440/886 - loss 0.10959000 - samples/sec: 425.11 - lr: 0.000050
|
330 |
+
2021-11-17 15:58:21,918 epoch 10 - iter 528/886 - loss 0.10964689 - samples/sec: 425.52 - lr: 0.000050
|
331 |
+
2021-11-17 15:58:35,102 epoch 10 - iter 616/886 - loss 0.11011373 - samples/sec: 427.66 - lr: 0.000050
|
332 |
+
2021-11-17 15:58:48,156 epoch 10 - iter 704/886 - loss 0.10975773 - samples/sec: 431.74 - lr: 0.000050
|
333 |
+
2021-11-17 15:59:01,225 epoch 10 - iter 792/886 - loss 0.10955614 - samples/sec: 431.43 - lr: 0.000050
|
334 |
+
2021-11-17 15:59:14,205 epoch 10 - iter 880/886 - loss 0.10966756 - samples/sec: 434.19 - lr: 0.000050
|
335 |
+
2021-11-17 15:59:15,113 ----------------------------------------------------------------------------------------------------
|
336 |
+
2021-11-17 15:59:15,114 EPOCH 10 done: loss 0.1096 - lr 0.0000500
|
337 |
+
2021-11-17 15:59:30,962 DEV : loss 0.004609304014593363 - f1-score (micro avg) 0.9993
|
338 |
+
2021-11-17 15:59:31,047 BAD EPOCHS (no improvement): 2
|
339 |
+
2021-11-17 15:59:31,418 ----------------------------------------------------------------------------------------------------
|
340 |
+
2021-11-17 15:59:31,419 loading file training/flair_ner/17112021_152905/best-model.pt
|
341 |
+
2021-11-17 15:59:49,424 0.9993 0.9993 0.9993 0.9993
|
342 |
+
2021-11-17 15:59:49,425
|
343 |
+
Results:
|
344 |
+
- F-score (micro) 0.9993
|
345 |
+
- F-score (macro) 0.9984
|
346 |
+
- Accuracy 0.9993
|
347 |
+
|
348 |
+
By class:
|
349 |
+
precision recall f1-score support
|
350 |
+
|
351 |
+
nb_rounds 0.9988 0.9991 0.9990 6882
|
352 |
+
duration_br_min 0.9997 0.9979 0.9988 3303
|
353 |
+
duration_wt_sd 1.0000 1.0000 1.0000 3251
|
354 |
+
duration_wt_min 1.0000 1.0000 1.0000 2698
|
355 |
+
duration_br_sd 0.9995 0.9995 0.9995 2003
|
356 |
+
duration_wt_hr 1.0000 1.0000 1.0000 1068
|
357 |
+
duration_br_hr 0.9830 1.0000 0.9914 231
|
358 |
+
|
359 |
+
micro avg 0.9993 0.9993 0.9993 19436
|
360 |
+
macro avg 0.9973 0.9995 0.9984 19436
|
361 |
+
weighted avg 0.9993 0.9993 0.9993 19436
|
362 |
+
samples avg 0.9993 0.9993 0.9993 19436
|
363 |
+
|
364 |
+
2021-11-17 15:59:49,425 ----------------------------------------------------------------------------------------------------
|