RCAN model trained on DIV2K
RCAN is a very deep residual channel attention network for super resolution trained on DIV2K. It was introduced in the paper Image Super-Resolution Using Very Deep Residual Channel Attention Networks in 2018 by Yulun Zhang et al. and first released in this repository.
We develop a modified version that could be supported by AMD Ryzen AI.
Model description
RCAN is an advanced algorithm for single image super resolution. Our modified version is smaller than the original version. It is based deep learning techniques and is capable of X2 super resolution.
Intended uses & limitations
You can use the raw model for super resolution. See the model hub to look for all available RCAN models.
How to use
Installation
Follow Ryzen AI Installation to prepare the environment for Ryzen AI. Run the following script to install pre-requisites for this model.
pip install -r requirements.txt
Data Preparation (optional: for accuracy evaluation)
- Download the benchmark(https://cv.snu.ac.kr/research/EDSR/benchmark.tar) dataset.
- Organize the dataset directory as follows:
βββ dataset
βββ benchmark
βββ Set5
βββ HR
| βββ baby.png
| βββ ...
βββ LR_bicubic
βββX2
βββbabyx2.png
βββ ...
βββ Set14
βββ ...
Test & Evaluation
- Code snippet from
infer_onnx.py
on how to use
parser = argparse.ArgumentParser(description='RCAN SISR')
parser.add_argument('--onnx_path', type=str, default='RCAN_int8_NHWC.onnx',
help='onnx path')
parser.add_argument('--image_path', default='test_data/test.png',
help='path of your image')
parser.add_argument('--output_path', default='test_data/sr.png',
help='path of your image')
parser.add_argument('--ipu', action='store_true',
help='use ipu')
parser.add_argument('--provider_config', type=str, default=None,
help='provider config path')
args = parser.parse_args()
if args.ipu:
providers = ["VitisAIExecutionProvider"]
provider_options = [{"config_file": args.provider_config}]
else:
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
provider_options = None
onnx_file_name = args.onnx_path
image_path = args.image_path
output_path = args.output_path
ort_session = onnxruntime.InferenceSession(onnx_file_name, providers=providers, provider_options=provider_options)
lr = cv2.imread(image_path)[np.newaxis,:,:,:].transpose((0,3,1,2)).astype(np.float32)
sr = tiling_inference(ort_session, lr, 8, (56, 56))
sr = np.clip(sr, 0, 255)
sr = sr.squeeze().transpose((1,2,0)).astype(np.uint8)
sr = cv2.imwrite(output_path, sr)
- Run inference for a single image
python infer_onnx.py --onnx_path RCAN_int8_NHWC.onnx --image_path /Path/To/Your/Image --ipu --provider_config Path/To/vaip_config.json
- Test accuracy of the quantized model
python eval_onnx.py --onnx_path RCAN_int8_NHWC.onnx --data_test Set5 --ipu --provider_config Path/To/vaip_config.json
Performance
Method | Scale | Flops | Set5 |
---|---|---|---|
RCAN-S (float) | X2 | 24.5G | 37.531 / 0.958 |
RCAN-S (INT8) | X2 | 24.5G | 37.150 / 0.955 |
- Note: the Flops is calculated with the output resolution is 360x640
@inproceedings{zhang2018image,
title={Image super-resolution using very deep residual channel attention networks},
author={Zhang, Yulun and Li, Kunpeng and Li, Kai and Wang, Lichen and Zhong, Bineng and Fu, Yun},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={286--301},
year={2018}
}