language: fr
license: mit
tags:
- roberta
- token-classification
base_model: almanach/camembertv2-base
datasets:
- Rhapsodie
metrics:
- las
- upos
model-index:
- name: almanach/camembertv2-base-rhapsodie
results:
- task:
type: token-classification
name: Part-of-Speech Tagging
dataset:
type: Rhapsodie
name: Rhapsodie
metrics:
- name: upos
type: upos
value: 0.97556
verified: false
- task:
type: token-classification
name: Dependency Parsing
dataset:
type: Rhapsodie
name: Rhapsodie
metrics:
- name: las
type: las
value: 0.84497
verified: false
Model Card for almanach/camembertv2-base-rhapsodie
almanach/camembertv2-base-rhapsodie is a roberta model for token classification. It is trained on the Rhapsodie dataset for the task of Part-of-Speech Tagging and Dependency Parsing. The model achieves an f1 score of on the Rhapsodie dataset.
The model is part of the almanach/camembertv2-base family of model finetunes.
Model Details
Model Description
- Developed by: Wissam Antoun (Phd Student at Almanach, Inria-Paris)
- Model type: roberta
- Language(s) (NLP): French
- License: MIT
- Finetuned from model : almanach/camembertv2-base
Model Sources
- Repository: https://github.com/WissamAntoun/camemberta
- Paper: https://arxiv.org/abs/2411.08868
Uses
The model can be used for token classification tasks in French for Part-of-Speech Tagging and Dependency Parsing.
Bias, Risks, and Limitations
The model may exhibit biases based on the training data. The model may not generalize well to other datasets or tasks. The model may also have limitations in terms of the data it was trained on.
How to Get Started with the Model
You can use the models directly with the hopsparser library in server mode https://github.com/hopsparser/hopsparser/blob/main/docs/server.md
Training Details
Training Procedure
Model trained with the hopsparser library on the Rhapsodie dataset.
Training Hyperparameters
# Layer dimensions
mlp_input: 1024
mlp_tag_hidden: 16
mlp_arc_hidden: 512
mlp_lab_hidden: 128
# Lexers
lexers:
- name: word_embeddings
type: words
embedding_size: 256
word_dropout: 0.5
- name: char_level_embeddings
type: chars_rnn
embedding_size: 64
lstm_output_size: 128
- name: fasttext
type: fasttext
- name: camembertv2_base_p2_17k_last_layer
type: bert
model: /scratch/camembertv2/runs/models/camembertv2-base-bf16/post/ckpt-p2-17000/pt/
layers: [11]
subwords_reduction: "mean"
# Training hyperparameters
encoder_dropout: 0.5
mlp_dropout: 0.5
batch_size: 8
epochs: 64
lr:
base: 0.00003
schedule:
shape: linear
warmup_steps: 100
Results
UPOS: 0.97556 LAS: 0.84497
Technical Specifications
Model Architecture and Objective
roberta custom model for token classification.
Citation
BibTeX:
@misc{antoun2024camembert20smarterfrench,
title={CamemBERT 2.0: A Smarter French Language Model Aged to Perfection},
author={Wissam Antoun and Francis Kulumba and Rian Touchent and Éric de la Clergerie and Benoît Sagot and Djamé Seddah},
year={2024},
eprint={2411.08868},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2411.08868},
}
@inproceedings{grobol:hal-03223424,
title = {Analyse en dépendances du français avec des plongements contextualisés},
author = {Grobol, Loïc and Crabbé, Benoît},
url = {https://hal.archives-ouvertes.fr/hal-03223424},
booktitle = {Actes de la 28ème Conférence sur le Traitement Automatique des Langues Naturelles},
eventtitle = {TALN-RÉCITAL 2021},
venue = {Lille, France},
pdf = {https://hal.archives-ouvertes.fr/hal-03223424/file/HOPS_final.pdf},
hal_id = {hal-03223424},
hal_version = {v1},
}