Update README.md

#2
by oliverwm - opened
Files changed (1) hide show
  1. README.md +13 -1
README.md CHANGED
@@ -12,11 +12,23 @@ Ai2 Climate Emulator (ACE) is a family of models designed to simulate atmospheri
12
 
13
  ACE2-ERA5 is trained on the [ERA5 dataset](https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.3803) and is described in [ACE2: Accurately learning subseasonal to decadal atmospheric variability and forced responses](https://arxiv.org/abs/2411.11268).
14
 
15
- Quick links:
16
  - πŸ“ƒ [Paper](https://arxiv.org/abs/2411.11268)
17
  - πŸ’» [Code](https://github.com/ai2cm/ace)
18
  - πŸ’¬ [Docs](https://ai2-climate-emulator.readthedocs.io/en/stable/)
19
  - πŸ“‚ [All Models](https://huggingface.co/collections/allenai/ace-67327d822f0f0d8e0e5e6ca4)
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  Briefly, the strengths of ACE2-ERA5 are:
22
  - accurate atmospheric warming response to combined increase of sea surface temperature and CO2 over last 80 years
 
12
 
13
  ACE2-ERA5 is trained on the [ERA5 dataset](https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.3803) and is described in [ACE2: Accurately learning subseasonal to decadal atmospheric variability and forced responses](https://arxiv.org/abs/2411.11268).
14
 
15
+ ### Quick links
16
  - πŸ“ƒ [Paper](https://arxiv.org/abs/2411.11268)
17
  - πŸ’» [Code](https://github.com/ai2cm/ace)
18
  - πŸ’¬ [Docs](https://ai2-climate-emulator.readthedocs.io/en/stable/)
19
  - πŸ“‚ [All Models](https://huggingface.co/collections/allenai/ace-67327d822f0f0d8e0e5e6ca4)
20
+ - πŸ’Ύ [Training Data](https://console.cloud.google.com/storage/browser/ai2cm-public-requester-pays/2024-11-13-ai2-climate-emulator-v2-amip/data)
21
+
22
+ ### Inference quickstart
23
+ 1. Download this repository. Optionally, you can just download a subset of the `forcing_data` and `initial_conditions` for the period you are interested in.
24
+
25
+ 2. Update paths in the `inference_config.yaml`. Specifically, update `experiment_dir`, `checkpoint_path`, `initial_condition.path` and `forcing_loader.dataset.path`.
26
+
27
+ 3. Install code dependencies with `pip install fme`.
28
+
29
+ 4. Run inference with `python -m fme.ace.inference inference_config.yaml`.
30
+
31
+ ### Strengths and weaknesses
32
 
33
  Briefly, the strengths of ACE2-ERA5 are:
34
  - accurate atmospheric warming response to combined increase of sea surface temperature and CO2 over last 80 years