cva-flow-weighted-classifier
This model is a fine-tuned version of alex-miller/ODABert on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4448
- Accuracy: 0.91
- F1: 0.9217
- Precision: 0.9464
- Recall: 0.8983
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.5967 | 1.0 | 7 | 0.3370 | 0.86 | 0.8727 | 0.9412 | 0.8136 |
0.3255 | 2.0 | 14 | 0.3018 | 0.88 | 0.9016 | 0.8730 | 0.9322 |
0.2274 | 3.0 | 21 | 0.3502 | 0.89 | 0.9076 | 0.9 | 0.9153 |
0.0835 | 4.0 | 28 | 0.4278 | 0.88 | 0.8889 | 0.9796 | 0.8136 |
0.0568 | 5.0 | 35 | 0.7164 | 0.82 | 0.8571 | 0.8060 | 0.9153 |
0.0979 | 6.0 | 42 | 0.3929 | 0.88 | 0.8909 | 0.9608 | 0.8305 |
0.0374 | 7.0 | 49 | 0.4090 | 0.9 | 0.9153 | 0.9153 | 0.9153 |
0.0208 | 8.0 | 56 | 0.5139 | 0.9 | 0.9153 | 0.9153 | 0.9153 |
0.0216 | 9.0 | 63 | 0.4479 | 0.91 | 0.9217 | 0.9464 | 0.8983 |
0.0114 | 10.0 | 70 | 0.4448 | 0.91 | 0.9217 | 0.9464 | 0.8983 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for alex-miller/cva-flow-weighted-classifier
Base model
google-bert/bert-base-multilingual-uncased
Finetuned
alex-miller/ODABert