Edit model card

InstructCV: Instruction-Tuned Text-to-Image Diffusion Models as Vision Generalists

GitHub: https://github.com/AlaaLab/InstructCV

pCVB5B8.png

Example

To use InstructCV, install diffusers using main for now. The pipeline will be available in the next release

pip install diffusers accelerate safetensors transformers
import PIL
import requests
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler

model_id = "yulu2/InstructCV"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None, variant="ema")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)

url = "put your url here"

def download_image(url):
    image = PIL.Image.open(requests.get(url, stream=True).raw)
    image = PIL.ImageOps.exif_transpose(image)
    image = image.convert("RGB")
    return image

image         = download_image(URL)
seed          = random.randint(0, 100000)
generator     = torch.manual_seed(seed)
width, height = image.size
factor        = 512 / max(width, height)
factor        = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
width         = int((width * factor) // 64) * 64
height        = int((height * factor) // 64) * 64
image         = ImageOps.fit(image, (width, height), method=Image.Resampling.LANCZOS)

prompt        = "Detect the person."
images        = pipe(prompt, image=image, num_inference_steps=100, generator=generator).images[0]
images[0]
Downloads last month
82
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using alaa-lab/InstructCV 1