nbaldwin's picture
v1.1.0
df437d3
"""A simple script to run a Flow that can be used for development and debugging."""
import os
import hydra
import aiflows
from aiflows.backends.api_info import ApiInfo
from aiflows.utils.general_helpers import read_yaml_file, quick_load_api_keys
from aiflows import logging
from aiflows.flow_cache import CACHING_PARAMETERS, clear_cache
from aiflows.utils import serving
from aiflows.workers import run_dispatch_worker_thread
from aiflows.messages import FlowMessage
from aiflows.interfaces import KeyInterface
from aiflows.utils.colink_utils import start_colink_server
from aiflows.workers import run_dispatch_worker_thread
CACHING_PARAMETERS.do_caching = False # Set to True in order to disable caching
# clear_cache() # Uncomment this line to clear the cache
logging.set_verbosity_debug()
dependencies = [
{"url": "aiflows/ControllerExecutorFlowModule", "revision": os.getcwd()}
]
from aiflows import flow_verse
flow_verse.sync_dependencies(dependencies)
if __name__ == "__main__":
#1. ~~~~~ Set up a colink server ~~~~
FLOW_MODULES_PATH = "./"
cl = start_colink_server()
#2. ~~~~~Load flow config~~~~~~
root_dir = "."
cfg_path = os.path.join(root_dir, "demo.yaml")
cfg = read_yaml_file(cfg_path)
#2.1 ~~~ Set the API information ~~~
# OpenAI backend
api_information = [ApiInfo(backend_used="openai",
api_key = os.getenv("OPENAI_API_KEY"))]
# # Azure backend
# api_information = ApiInfo(backend_used = "azure",
# api_base = os.getenv("AZURE_API_BASE"),
# api_key = os.getenv("AZURE_OPENAI_KEY"),
# api_version = os.getenv("AZURE_API_VERSION") )
quick_load_api_keys(cfg, api_information, key="api_infos")
#3. ~~~~ Serve The Flow ~~~~
# serving.recursive_serve_flow(
# cl = cl,
# flow_class_name="flow_modules.aiflows.ControllerExecutorFlowModule.WikiSearchAtomicFlow",
# flow_endpoint="WikiSearchAtomicFlow",
# )
# serving.serve_flow(
# cl = cl,
# flow_class_name="flow_modules.aiflows.ControllerExecutorFlowModule.ControllerAtomicFlow",
# flow_endpoint="ControllerAtomicFlow",
# )
serving.recursive_serve_flow(
cl = cl,
flow_class_name="flow_modules.aiflows.ControllerExecutorFlowModule.ControllerExecutorFlow",
flow_endpoint="ControllerExecutorFlow",
)
#4. ~~~~~Start A Worker Thread~~~~~
run_dispatch_worker_thread(cl)
#5. ~~~~~Mount the flow and get its proxy~~~~~~
proxy_flow= serving.get_flow_instance(
cl=cl,
flow_endpoint="ControllerExecutorFlow",
user_id="local",
config_overrides = cfg
)
#6. ~~~ Get the data ~~~
data = {
"id": 0,
"goal": "Answer the following question: What is the profession and date of birth of Michael Jordan?",
}
#option1: use the FlowMessage class
input_message = FlowMessage(
data=data,
)
#option2: use the proxy_flow
#input_message = proxy_flow.package_input_message(data = data)
#7. ~~~ Run inference ~~~
future = proxy_flow.get_reply_future(input_message)
#uncomment this line if you would like to get the full message back
#reply_message = future.get_message()
reply_data = future.get_data()
# ~~~ Print the output ~~~
print("~~~~~~Reply~~~~~~")
print(reply_data)
#8. ~~~~ (Optional) apply output interface on reply ~~~~
# output_interface = KeyInterface(
# keys_to_rename={"api_output": "answer"},
# )
# print("Output: ", output_interface(reply_data))
#9. ~~~~~Optional: Unserve Flow~~~~~~
# serving.delete_served_flow(cl, "FlowModule")