File size: 3,857 Bytes
1beb8a2 40a0d94 93c74cc 5fbaf2a 40a0d94 93c74cc 1beb8a2 df437d3 5fbaf2a 1beb8a2 40a0d94 1beb8a2 40a0d94 1beb8a2 40a0d94 1beb8a2 40a0d94 1beb8a2 5fbaf2a 1beb8a2 5fbaf2a 1beb8a2 40a0d94 1beb8a2 5eb5cb9 df437d3 34a9244 5eb5cb9 df437d3 34a9244 40a0d94 df437d3 5eb5cb9 1beb8a2 5eb5cb9 40a0d94 1beb8a2 df437d3 5fbaf2a 5eb5cb9 1beb8a2 5fbaf2a 1beb8a2 5fbaf2a 1beb8a2 a8e421a 1beb8a2 a8e421a 5fbaf2a 1beb8a2 5fbaf2a 1beb8a2 df437d3 1beb8a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
"""A simple script to run a Flow that can be used for development and debugging."""
import os
import hydra
import aiflows
from aiflows.backends.api_info import ApiInfo
from aiflows.utils.general_helpers import read_yaml_file, quick_load_api_keys
from aiflows import logging
from aiflows.flow_cache import CACHING_PARAMETERS, clear_cache
from aiflows.utils import serving
from aiflows.workers import run_dispatch_worker_thread
from aiflows.messages import FlowMessage
from aiflows.interfaces import KeyInterface
from aiflows.utils.colink_utils import start_colink_server
from aiflows.workers import run_dispatch_worker_thread
CACHING_PARAMETERS.do_caching = False # Set to True in order to disable caching
# clear_cache() # Uncomment this line to clear the cache
logging.set_verbosity_debug()
dependencies = [
{"url": "aiflows/ControllerExecutorFlowModule", "revision": os.getcwd()}
]
from aiflows import flow_verse
flow_verse.sync_dependencies(dependencies)
if __name__ == "__main__":
#1. ~~~~~ Set up a colink server ~~~~
FLOW_MODULES_PATH = "./"
cl = start_colink_server()
#2. ~~~~~Load flow config~~~~~~
root_dir = "."
cfg_path = os.path.join(root_dir, "demo.yaml")
cfg = read_yaml_file(cfg_path)
#2.1 ~~~ Set the API information ~~~
# OpenAI backend
api_information = [ApiInfo(backend_used="openai",
api_key = os.getenv("OPENAI_API_KEY"))]
# # Azure backend
# api_information = ApiInfo(backend_used = "azure",
# api_base = os.getenv("AZURE_API_BASE"),
# api_key = os.getenv("AZURE_OPENAI_KEY"),
# api_version = os.getenv("AZURE_API_VERSION") )
quick_load_api_keys(cfg, api_information, key="api_infos")
#3. ~~~~ Serve The Flow ~~~~
# serving.recursive_serve_flow(
# cl = cl,
# flow_class_name="flow_modules.aiflows.ControllerExecutorFlowModule.WikiSearchAtomicFlow",
# flow_endpoint="WikiSearchAtomicFlow",
# )
# serving.serve_flow(
# cl = cl,
# flow_class_name="flow_modules.aiflows.ControllerExecutorFlowModule.ControllerAtomicFlow",
# flow_endpoint="ControllerAtomicFlow",
# )
serving.recursive_serve_flow(
cl = cl,
flow_class_name="flow_modules.aiflows.ControllerExecutorFlowModule.ControllerExecutorFlow",
flow_endpoint="ControllerExecutorFlow",
)
#4. ~~~~~Start A Worker Thread~~~~~
run_dispatch_worker_thread(cl)
#5. ~~~~~Mount the flow and get its proxy~~~~~~
proxy_flow= serving.get_flow_instance(
cl=cl,
flow_endpoint="ControllerExecutorFlow",
user_id="local",
config_overrides = cfg
)
#6. ~~~ Get the data ~~~
data = {
"id": 0,
"goal": "Answer the following question: What is the profession and date of birth of Michael Jordan?",
}
#option1: use the FlowMessage class
input_message = FlowMessage(
data=data,
)
#option2: use the proxy_flow
#input_message = proxy_flow.package_input_message(data = data)
#7. ~~~ Run inference ~~~
future = proxy_flow.get_reply_future(input_message)
#uncomment this line if you would like to get the full message back
#reply_message = future.get_message()
reply_data = future.get_data()
# ~~~ Print the output ~~~
print("~~~~~~Reply~~~~~~")
print(reply_data)
#8. ~~~~ (Optional) apply output interface on reply ~~~~
# output_interface = KeyInterface(
# keys_to_rename={"api_output": "answer"},
# )
# print("Output: ", output_interface(reply_data))
#9. ~~~~~Optional: Unserve Flow~~~~~~
# serving.delete_served_flow(cl, "FlowModule")
|