en-vi-model_v3_opus / README.md
aiface's picture
End of training
834657e
metadata
license: apache-2.0
base_model: t5-small
tags:
  - generated_from_trainer
metrics:
  - bleu
model-index:
  - name: en-vi-model_v3_opus
    results: []

en-vi-model_v3_opus

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8572
  • Bleu: 8.2434

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Bleu Validation Loss
1.4493 0.13 500 3.9998 1.3541
1.2915 0.26 1000 5.3936 1.2113
1.2059 0.38 1500 5.8381 1.1367
1.1573 0.51 2000 6.2422 1.0901
1.1121 0.64 2500 6.6271 1.0542
1.0867 0.77 3000 6.8796 1.0252
1.0623 0.9 3500 7.0393 1.0068
1.0408 1.02 4000 7.2660 0.9882
1.0203 1.15 4500 7.0553 0.9723
1.0054 1.28 5000 7.4555 0.9624
0.9977 1.41 5500 7.4260 0.9526
0.9931 1.54 6000 7.5231 0.9396
0.9804 1.66 6500 7.4376 0.9324
0.9691 1.79 7000 7.5227 0.9264
0.9645 1.92 7500 7.6859 0.9193
0.9509 2.05 8000 7.6473 0.9144
0.9485 2.18 8500 7.6548 0.9118
0.9437 2.3 9000 7.6066 0.9073
0.9393 2.43 9500 7.7140 0.9019
0.9336 2.56 10000 7.8095 0.8970
0.9368 2.69 10500 7.9377 0.8937
0.925 2.82 11000 7.8425 0.8898
0.921 2.94 11500 7.9008 0.8864
0.9177 3.07 12000 7.9134 0.8836
0.9151 3.2 12500 0.8821 7.8647
0.9104 3.33 13000 0.8790 8.0830
0.9035 3.46 13500 0.8766 8.0959
0.8992 3.58 14000 0.8741 8.0178
0.8986 3.71 14500 0.8720 8.0384
0.894 3.84 15000 0.8683 8.0913
0.8932 3.97 15500 0.8663 8.0997
0.8889 4.1 16000 0.8641 8.1088
0.8888 4.22 16500 0.8629 8.0665
0.8856 4.35 17000 0.8607 8.2836
0.8826 4.48 17500 0.8613 8.2354
0.8862 4.61 18000 0.8578 8.1166
0.8811 4.74 18500 0.8583 8.1473
0.8799 4.86 19000 0.8579 8.1836
0.8827 4.99 19500 0.8572 8.2434

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1