File size: 4,168 Bytes
913fbd3 bb5a59f 52e80b4 913fbd3 bb5a59f 913fbd3 bb5a59f 913fbd3 bb5a59f 913fbd3 bb5a59f 913fbd3 bb5a59f 913fbd3 bb5a59f 52e80b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
language:
- ko
pipeline_tag: text-generation
tags:
- instruction_ft
---
We built this modle based on princeton-nlp/Sheared-LLaMA-1.3B.
We finetuned the model using korean wiki, ko alpaca with Lora.
Please see following information about princeton-nlp/Sheared-LLaMA-1.3B.
**Paper**: [https://arxiv.org/pdf/2310.06694.pdf](https://arxiv.org/pdf/2310.06694.pdf)
**Code**: https://github.com/princeton-nlp/LLM-Shearing
**Models**: [Sheared-LLaMA-1.3B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B), [Sheared-LLaMA-2.7B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B)
**Pruned Models without Continued Pre-training**: [Sheared-LLaMA-1.3B-Pruned](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B-Pruned), [Sheared-LLaMA-2.7B-Pruned](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B-Pruned)
**Instruction-tuned Models**: [Sheared-LLaMA-1.3B-ShareGPT](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B-ShareGPT), [Sheared-LLaMA-2.7B-ShareGPT](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B-ShareGPT)
**License**: Must comply with license of Llama2 since it's a model derived from Llama2.
---
Sheared-LLaMA-1.3B is a model pruned and further pre-trained from [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf). We dynamically load data from different domains in the [RedPajama dataset](https://github.com/togethercomputer/RedPajama-Data) to prune and contune pre-train the model. We use 0.4B tokens for pruning and 50B tokens for continued pre-training the pruned model. This model can be loaded with HuggingFace via
```
model = AutoModelForCausalLM.from_pretrained("princeton-nlp/Sheared-LLaMA-1.3B")
```
- Smaller-scale
- Same vocabulary as LLaMA1 and LLaMA2
- Derived with a budget of 50B tokens by utilizing existing strong LLMs
## Downstream Tasks
We evaluate on an extensive set of downstream tasks including reasoning, reading comprehension, language modeling and knowledge intensive tasks. Our Sheared-LLaMA models outperform existing large language models.
| Model | # Pre-training Tokens | Average Performance |
| ------------------- | --------------------- | ------------------- |
| LLaMA2-7B | 2T | 64.6 |
**1.3B**
| Model | # Pre-training Tokens | Average Performance |
| ------------------- | --------------------- | ------------------- |
| OPT-1.3B | 300B | 48.2 |
| Pythia-1.4B | 300B | 48.9 |
| **Sheared-LLaMA-1.3B** | **50B** | **51.0** |
**3B**
| Model | # Pre-training Tokens | Average Performance |
| ------------------- | --------------------- | ------------------- |
| OPT-2.7B | 300B | 51.4 |
| Pythia-2.8B | 300B | 52.5 |
| INCITE-Base-3B | 800B | 54.7 |
| Open-LLaMA-3B-v1 | 1T | 55.1 |
| Open-LLaMA-3B-v2 | 1T | 55.7 |
| Sheared-LLaMA-2.7B | 50B | 56.7 |
## Bibtex
```
@article{xia2023sheared,
title={Sheared llama: Accelerating language model pre-training via structured pruning},
author={Xia, Mengzhou and Gao, Tianyu and Zeng, Zhiyuan and Chen, Danqi},
journal={arXiv preprint arXiv:2310.06694},
year={2023}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_princeton-nlp__Sheared-LLaMA-1.3B)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 31.47 |
| ARC (25-shot) | 32.85 |
| HellaSwag (10-shot) | 60.91 |
| MMLU (5-shot) | 25.71 |
| TruthfulQA (0-shot) | 37.14 |
| Winogrande (5-shot) | 58.64 |
| GSM8K (5-shot) | 0.45 |
| DROP (3-shot) | 4.56 | |