ahnyeonchan commited on
Commit
bb5a59f
1 Parent(s): 705d280

Update README.md

Browse files

added initial description in README.md

Files changed (1) hide show
  1. README.md +71 -188
README.md CHANGED
@@ -1,199 +1,82 @@
1
  ---
2
- library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
11
 
12
- ## Model Details
 
 
 
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
 
3
  ---
4
 
5
+ We built this modle based on princeton-nlp/Sheared-LLaMA-1.3B.
6
+ We finetuned the model using korean wiki, ko alpaca with Lora.
7
 
8
+ Please see following information about princeton-nlp/Sheared-LLaMA-1.3B.
9
 
10
 
11
 
12
+ **Paper**: [https://arxiv.org/pdf/2310.06694.pdf](https://arxiv.org/pdf/2310.06694.pdf)
13
+ **Code**: https://github.com/princeton-nlp/LLM-Shearing
14
+ **Models**: [Sheared-LLaMA-1.3B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B), [Sheared-LLaMA-2.7B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B)
15
+ **Pruned Models without Continued Pre-training**: [Sheared-LLaMA-1.3B-Pruned](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B-Pruned), [Sheared-LLaMA-2.7B-Pruned](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B-Pruned)
16
+ **Instruction-tuned Models**: [Sheared-LLaMA-1.3B-ShareGPT](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B-ShareGPT), [Sheared-LLaMA-2.7B-ShareGPT](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B-ShareGPT)
17
 
18
+ **License**: Must comply with license of Llama2 since it's a model derived from Llama2.
19
 
20
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
 
22
 
23
+ Sheared-LLaMA-1.3B is a model pruned and further pre-trained from [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf). We dynamically load data from different domains in the [RedPajama dataset](https://github.com/togethercomputer/RedPajama-Data) to prune and contune pre-train the model. We use 0.4B tokens for pruning and 50B tokens for continued pre-training the pruned model. This model can be loaded with HuggingFace via
24
+
25
+ ```
26
+ model = AutoModelForCausalLM.from_pretrained("princeton-nlp/Sheared-LLaMA-1.3B")
27
+ ```
28
+
29
+ - Smaller-scale
30
+ - Same vocabulary as LLaMA1 and LLaMA2
31
+ - Derived with a budget of 50B tokens by utilizing existing strong LLMs
32
+
33
+ ## Downstream Tasks
34
+
35
+ We evaluate on an extensive set of downstream tasks including reasoning, reading comprehension, language modeling and knowledge intensive tasks. Our Sheared-LLaMA models outperform existing large language models.
36
+
37
+ | Model | # Pre-training Tokens | Average Performance |
38
+ | ------------------- | --------------------- | ------------------- |
39
+ | LLaMA2-7B | 2T | 64.6 |
40
+
41
+ **1.3B**
42
+
43
+ | Model | # Pre-training Tokens | Average Performance |
44
+ | ------------------- | --------------------- | ------------------- |
45
+ | OPT-1.3B | 300B | 48.2 |
46
+ | Pythia-1.4B | 300B | 48.9 |
47
+ | **Sheared-LLaMA-1.3B** | **50B** | **51.0** |
48
+
49
+ **3B**
50
+
51
+ | Model | # Pre-training Tokens | Average Performance |
52
+ | ------------------- | --------------------- | ------------------- |
53
+ | OPT-2.7B | 300B | 51.4 |
54
+ | Pythia-2.8B | 300B | 52.5 |
55
+ | INCITE-Base-3B | 800B | 54.7 |
56
+ | Open-LLaMA-3B-v1 | 1T | 55.1 |
57
+ | Open-LLaMA-3B-v2 | 1T | 55.7 |
58
+ | Sheared-LLaMA-2.7B | 50B | 56.7 |
59
+
60
+ ## Bibtex
61
+ ```
62
+ @article{xia2023sheared,
63
+ title={Sheared llama: Accelerating language model pre-training via structured pruning},
64
+ author={Xia, Mengzhou and Gao, Tianyu and Zeng, Zhiyuan and Chen, Danqi},
65
+ journal={arXiv preprint arXiv:2310.06694},
66
+ year={2023}
67
+ }
68
+ ```
69
+
70
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
71
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_princeton-nlp__Sheared-LLaMA-1.3B)
72
+
73
+ | Metric | Value |
74
+ |-----------------------|---------------------------|
75
+ | Avg. | 31.47 |
76
+ | ARC (25-shot) | 32.85 |
77
+ | HellaSwag (10-shot) | 60.91 |
78
+ | MMLU (5-shot) | 25.71 |
79
+ | TruthfulQA (0-shot) | 37.14 |
80
+ | Winogrande (5-shot) | 58.64 |
81
+ | GSM8K (5-shot) | 0.45 |
82
+ | DROP (3-shot) | 4.56 |