afrideva's picture
Upload README.md with huggingface_hub
7142481 verified
metadata
base_model: rhaymison/phi-3-portuguese-tom-cat-4k-instruct
datasets:
  - rhaymison/superset
inference: true
language:
  - pt
library_name: transformers
license: apache-2.0
model-index:
  - name: phi-3-portuguese-tom-cat-4k-instruct
    results:
      - dataset:
          args:
            num_few_shot: 3
          name: ENEM Challenge (No Images)
          split: train
          type: eduagarcia/enem_challenge
        metrics:
          - name: accuracy
            type: acc
            value: 61.58
        source:
          name: Open Portuguese LLM Leaderboard
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/phi-3-portuguese-tom-cat-4k-instruct
        task:
          name: Text Generation
          type: text-generation
      - dataset:
          args:
            num_few_shot: 3
          name: BLUEX (No Images)
          split: train
          type: eduagarcia-temp/BLUEX_without_images
        metrics:
          - name: accuracy
            type: acc
            value: 50.63
        source:
          name: Open Portuguese LLM Leaderboard
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/phi-3-portuguese-tom-cat-4k-instruct
        task:
          name: Text Generation
          type: text-generation
      - dataset:
          args:
            num_few_shot: 3
          name: OAB Exams
          split: train
          type: eduagarcia/oab_exams
        metrics:
          - name: accuracy
            type: acc
            value: 43.69
        source:
          name: Open Portuguese LLM Leaderboard
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/phi-3-portuguese-tom-cat-4k-instruct
        task:
          name: Text Generation
          type: text-generation
      - dataset:
          args:
            num_few_shot: 15
          name: Assin2 RTE
          split: test
          type: assin2
        metrics:
          - name: f1-macro
            type: f1_macro
            value: 91.54
        source:
          name: Open Portuguese LLM Leaderboard
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/phi-3-portuguese-tom-cat-4k-instruct
        task:
          name: Text Generation
          type: text-generation
      - dataset:
          args:
            num_few_shot: 15
          name: Assin2 STS
          split: test
          type: eduagarcia/portuguese_benchmark
        metrics:
          - name: pearson
            type: pearson
            value: 75.27
        source:
          name: Open Portuguese LLM Leaderboard
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/phi-3-portuguese-tom-cat-4k-instruct
        task:
          name: Text Generation
          type: text-generation
      - dataset:
          args:
            num_few_shot: 15
          name: FaQuAD NLI
          split: test
          type: ruanchaves/faquad-nli
        metrics:
          - name: f1-macro
            type: f1_macro
            value: 47.46
        source:
          name: Open Portuguese LLM Leaderboard
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/phi-3-portuguese-tom-cat-4k-instruct
        task:
          name: Text Generation
          type: text-generation
      - dataset:
          args:
            num_few_shot: 25
          name: HateBR Binary
          split: test
          type: ruanchaves/hatebr
        metrics:
          - name: f1-macro
            type: f1_macro
            value: 83.01
        source:
          name: Open Portuguese LLM Leaderboard
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/phi-3-portuguese-tom-cat-4k-instruct
        task:
          name: Text Generation
          type: text-generation
      - dataset:
          args:
            num_few_shot: 25
          name: PT Hate Speech Binary
          split: test
          type: hate_speech_portuguese
        metrics:
          - name: f1-macro
            type: f1_macro
            value: 70.19
        source:
          name: Open Portuguese LLM Leaderboard
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/phi-3-portuguese-tom-cat-4k-instruct
        task:
          name: Text Generation
          type: text-generation
      - dataset:
          args:
            num_few_shot: 25
          name: tweetSentBR
          split: test
          type: eduagarcia/tweetsentbr_fewshot
        metrics:
          - name: f1-macro
            type: f1_macro
            value: 57.78
        source:
          name: Open Portuguese LLM Leaderboard
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/phi-3-portuguese-tom-cat-4k-instruct
        task:
          name: Text Generation
          type: text-generation
model_creator: rhaymison
model_name: phi-3-portuguese-tom-cat-4k-instruct
pipeline_tag: text-generation
quantized_by: afrideva
tags:
  - portugues
  - portuguese
  - QA
  - instruct
  - phi
  - gguf
  - ggml
  - quantized

phi-3-portuguese-tom-cat-4k-instruct-GGUF

Quantized GGUF model files for phi-3-portuguese-tom-cat-4k-instruct from rhaymison

Original Model Card:

Phi-3-portuguese-tom-cat-4k-instruct

This model was trained with a superset of 300,000 instructions in Portuguese. The model comes to help fill the gap in models in Portuguese. Tuned from the microsoft/Phi-3-mini-4k.

How to use

FULL MODEL : A100

HALF MODEL: L4

8bit or 4bit : T4 or V100

You can use the model in its normal form up to 4-bit quantization. Below we will use both approaches. Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response. Important points like these help models (even smaller models like 4b) to perform much better.

!pip install -q -U transformers
!pip install -q -U accelerate
!pip install -q -U bitsandbytes

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
model = AutoModelForCausalLM.from_pretrained("rhaymison/phi-3-portuguese-tom-cat-4k-instruct", device_map= {"": 0})
tokenizer = AutoTokenizer.from_pretrained("rhaymison/phi-3-portuguese-tom-cat-4k-instruct")
model.eval()

You can use with Pipeline.


from transformers import pipeline
pipe = pipeline("text-generation",
                model=model,
                tokenizer=tokenizer,
                do_sample=True,
                max_new_tokens=512,
                num_beams=2,
                temperature=0.3,
                top_k=50,
                top_p=0.95,
                early_stopping=True,
                pad_token_id=tokenizer.eos_token_id,
                )


def format_template(question:str):
    system_prompt = "Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido."
    return f"""<s><|system|>
    { system_prompt }
    <|user|>
    { question }
    <|assistant|>
    """

question = format_template("E possivel ir de Carro dos Estados unidos ate o japão")
pipe(question)

If you are having a memory problem such as "CUDA Out of memory", you should use 4-bit or 8-bit quantization. For the complete model in colab you will need the A100. If you want to use 4bits or 8bits, T4 or L4 will already solve the problem.

4bits example

from transformers import BitsAndBytesConfig
import torch
nb_4bit_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True
)

model = AutoModelForCausalLM.from_pretrained(
    base_model,
    quantization_config=bnb_config,
    device_map={"": 0}
)

Open Portuguese LLM Leaderboard Evaluation Results

Detailed results can be found here and on the 🚀 Open Portuguese LLM Leaderboard

Metric Value
Average 64.57
ENEM Challenge (No Images) 61.58
BLUEX (No Images) 50.63
OAB Exams 43.69
Assin2 RTE 91.54
Assin2 STS 75.27
FaQuAD NLI 47.46
HateBR Binary 83.01
PT Hate Speech Binary 70.19
tweetSentBR 57.78

Comments

Any idea, help or report will always be welcome.

email: [email protected]