afaji's picture
fresh-2-layer-medmcqa50000-distill-of-fresh-2-layer-mmlu_EVAL_mmlu
426d933 verified
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: fresh-2-layer-medmcqa50000-distill-of-fresh-2-layer-mmlu_EVAL_mmlu
    results: []

fresh-2-layer-medmcqa50000-distill-of-fresh-2-layer-mmlu_EVAL_mmlu

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 178.1362
  • Accuracy: 0.4510

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 321
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.06 100 200.7935 0.24
No log 0.13 200 195.0955 0.322
No log 0.19 300 199.3146 0.348
No log 0.26 400 181.3482 0.378
141.8956 0.32 500 183.5053 0.406
141.8956 0.38 600 175.3492 0.414
141.8956 0.45 700 179.5743 0.44
141.8956 0.51 800 178.0992 0.456
141.8956 0.58 900 167.6717 0.458
92.2658 0.64 1000 173.9797 0.422
92.2658 0.7 1100 177.7031 0.44
92.2658 0.77 1200 176.5930 0.45
92.2658 0.83 1300 184.5445 0.45
92.2658 0.9 1400 180.6332 0.466
80.2568 0.96 1500 180.5694 0.462
80.2568 1.02 1600 173.9805 0.462
80.2568 1.09 1700 168.0511 0.46
80.2568 1.15 1800 177.9322 0.458
80.2568 1.22 1900 172.7217 0.462

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.0