Edit model card

2404v6

This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5939
  • Accuracy: 0.8445
  • Precision: 0.8451
  • Recall: 0.8445
  • F1: 0.8445
  • Ratio: 0.4790

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • lr_scheduler_warmup_steps: 4
  • num_epochs: 2
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ratio
0.5731 0.2597 10 0.5646 0.8613 0.8645 0.8613 0.8610 0.4538
0.5515 0.5195 20 0.5569 0.8613 0.8626 0.8613 0.8612 0.4706
0.5164 0.7792 30 0.6079 0.8277 0.8363 0.8277 0.8266 0.5798
0.5641 1.0390 40 0.5728 0.8571 0.8608 0.8571 0.8568 0.4496
0.4665 1.2987 50 0.5992 0.8403 0.8407 0.8403 0.8403 0.5168
0.4632 1.5584 60 0.5990 0.8613 0.8634 0.8613 0.8611 0.4622
0.4456 1.8182 70 0.5939 0.8445 0.8451 0.8445 0.8445 0.4790

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for adriansanz/2404v6

Finetuned
(30)
this model