wav2vec2-wer / README.md
adrianSauer's picture
End of training
1965285 verified
metadata
language:
  - gn
license: apache-2.0
base_model: glob-asr/wav2vec2-large-xls-r-300m-guarani-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_1
metrics:
  - wer
model-index:
  - name: Common Voice 16
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 16
          type: mozilla-foundation/common_voice_16_1
          config: gn
          split: None
          args: gn
        metrics:
          - name: Wer
            type: wer
            value: 49.766822118587605

Common Voice 16

This model is a fine-tuned version of glob-asr/wav2vec2-large-xls-r-300m-guarani-small on the Common Voice 16 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3513
  • Wer: 49.7668

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4171 1.0152 100 0.3798 55.2965
0.3376 2.0305 200 0.3628 53.8974
0.294 3.0457 300 0.3528 52.4983
0.2632 4.0609 400 0.3484 49.7668
0.2459 5.0761 500 0.3513 49.7668

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1