Llama-3-Giraffe-70B / README.md
ArkaAbacus's picture
Update README.md
02457f4 verified
---
language:
- en
pipeline_tag: text-generation
tags:
- meta
- llama-3
license: llama3
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/pf4d6FA7DriRtVq5HCkxd.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/VcZWbW_eZkJAZZ5ricL4B.png)
# Llama-3-Giraffe-70B
Abacus.AI presents our longer-necked variant of Llama 3 70B!
This model has an effective context length of approximately 128k.
We have currently trained on ~1B tokens.
This is an initial release and we are hoping to improve the heatmap below further as we continue training.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/_NVEuQ2ZT-sBtDBNjgmbt.png)
## Training Methodology
The methodology for training uses [PoSE](https://arxiv.org/abs/2309.10400) and dynamic-NTK interpolation.
### NTK-scaling
The scale factor for NTK is 4. Note that we also tried theta-scaling but this did not work as well as NTK scaling in our experiments.
### PoSE
We utilise Positional Skip-wise Training (PoSE) with the following parameters:
- **Number of Chunks**: 5
- **Max position ID**: 32768
### Data
We use on average ~8K long samples from [RedPajama](https://github.com/togethercomputer/RedPajama-Data).
### Hardware
We train on 8xH100 GPUs with Deepspeed Zero Stage 3.
## Evaluation Methodology
We use the [EasyContext](https://github.com/abacusai/EasyContext/blob/eval_runs/eval_needle.py) implementation of Needle-in-a-Haystack to evaluate Llama-3-Giraffe-70B.
We evaluate with the following parameters:
- **Min context length**: 2000
- **Max context length**: 128000
- **Context interval**: 4000
- **Depth interval**: 0.1
- **Num samples**: 2
- **Rnd number digits**: 7
- **Haystack dir**: PaulGrahamEssays