metadata
language:
- en
license: llama3
tags:
- moe
model-index:
- name: L3-SnowStorm-v1.15-4x8B-A
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 62.2
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=xxx777xxxASD/L3-SnowStorm-v1.15-4x8B-A
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 81.09
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=xxx777xxxASD/L3-SnowStorm-v1.15-4x8B-A
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 67.89
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=xxx777xxxASD/L3-SnowStorm-v1.15-4x8B-A
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 52.11
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=xxx777xxxASD/L3-SnowStorm-v1.15-4x8B-A
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.32
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=xxx777xxxASD/L3-SnowStorm-v1.15-4x8B-A
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.49
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=xxx777xxxASD/L3-SnowStorm-v1.15-4x8B-A
name: Open LLM Leaderboard
Exllamav2 quant (exl2 / 4.0 bpw) made with ExLlamaV2 v0.1.1
Other EXL2 quants:
Quant | Model Size | lm_head |
---|---|---|
Experimental RP-oriented MoE, the idea was to get a model that would be equal to or better than Mixtral 8x7B and it's finetunes in RP/ERP tasks.
There's:
Llama 3 SnowStorm v1.15A 4x8B
base_model: NeverSleep_Llama-3-Lumimaid-8B-v0.1-OAS
gate_mode: random
dtype: bfloat16
experts_per_token: 2
experts:
- source_model: Nitral-AI_Poppy_Porpoise-1.0-L3-8B
- source_model: NeverSleep_Llama-3-Lumimaid-8B-v0.1-OAS
- source_model: openlynn_Llama-3-Soliloquy-8B-v2
- source_model: Sao10K_L3-8B-Stheno-v3.1
Models used
- Nitral-AI/Poppy_Porpoise-1.0-L3-8B
- NeverSleep/Llama-3-Lumimaid-8B-v0.1-OAS
- openlynn/Llama-3-Soliloquy-8B-v2
- Sao10K/L3-8B-Stheno-v3.1
Difference(from SnowStorm v1.0)
Vision
Prompt format: Llama 3
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 67.68 |
AI2 Reasoning Challenge (25-Shot) | 62.20 |
HellaSwag (10-Shot) | 81.09 |
MMLU (5-Shot) | 67.89 |
TruthfulQA (0-shot) | 52.11 |
Winogrande (5-shot) | 76.32 |
GSM8k (5-shot) | 66.49 |