Model Card for Model ID
How to use
Loading the model from Hunggingface:
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("ZiweiChen/BioMistral-Clinical-7B")
model = AutoModelForCausalLM.from_pretrained("ZiweiChen/BioMistral-Clinical-7B")
Lightweight model loading can be used - using 4-bit quantization!
!pip install -q -U bitsandbytes
!pip install -q -U git+https://github.com/huggingface/transformers.git
!pip install -q -U git+https://github.com/huggingface/peft.git
!pip install -q -U git+https://github.com/huggingface/accelerate.git
from transformers import AutoTokenizer, BitsAndBytesConfig, AutoModelForCausalLM
import torch
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained("ZiweiChen/BioMistral-Clinical-7B")
model = AutoModelForCausalLM.from_pretrained("ZiweiChen/BioMistral-Clinical-7B", quantization_config=bnb_config)
How to Generate text:
model_device = next(model.parameters()).device
prompt = """
### Question:
How to treat severe obesity?
### Answer:
"""
model_input = tokenizer(prompt, return_tensors="pt").to(model_device)
with torch.no_grad():
output = model.generate(**model_input, max_new_tokens=100)
answer = tokenizer.decode(output[0], skip_special_tokens=True)
print(answer)
Model Details
Model Description
- Downloads last month
- 81