|
--- |
|
license: llama2 |
|
--- |
|
This is the **Full-Weight** of WizardLM-13B V1.2 model, this model is trained from **Llama-2 13b**. |
|
|
|
## WizardLM: Empowering Large Pre-Trained Language Models to Follow Complex Instructions |
|
|
|
|
|
|
|
<p align="center"> |
|
π€ <a href="https://huggingface.co/WizardLM" target="_blank">HF Repo</a> β’π± <a href="https://github.com/nlpxucan/WizardLM" target="_blank">Github Repo</a> β’ π¦ <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> β’ π <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> β’ π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> β’ π <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a> <br> |
|
</p> |
|
<p align="center"> |
|
π Join our <a href="https://discord.gg/VZjjHtWrKs" target="_blank">Discord</a> |
|
</p> |
|
|
|
## News |
|
|
|
- π₯π₯π₯[2023/08/26] We released **WizardCoder-Python-34B-V1.0** , which achieves the **73.2 pass@1** and surpasses **GPT4 (2023/03/15)**, **ChatGPT-3.5**, and **Claude2** on the [HumanEval Benchmarks](https://github.com/openai/human-eval). For more details, please refer to [WizardCoder](https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder). |
|
- [2023/06/16] We released **WizardCoder-15B-V1.0** , which surpasses **Claude-Plus (+6.8)**, **Bard (+15.3)** and **InstructCodeT5+ (+22.3)** on the [HumanEval Benchmarks](https://github.com/openai/human-eval). For more details, please refer to [WizardCoder](https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder). |
|
|
|
| Model | Checkpoint | Paper | HumanEval | MBPP | Demo | License | |
|
| ----- |------| ---- |------|-------| ----- | ----- | |
|
| WizardCoder-Python-34B-V1.0 | π€ <a href="https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 73.2 | 61.2 | [Demo](http://47.103.63.15:50085/) | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> | |
|
| WizardCoder-15B-V1.0 | π€ <a href="https://huggingface.co/WizardLM/WizardCoder-15B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 59.8 |50.6 | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> | |
|
| WizardCoder-Python-13B-V1.0 | π€ <a href="https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 64.0 | 55.6 | -- | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> | |
|
| WizardCoder-Python-7B-V1.0 | π€ <a href="https://huggingface.co/WizardLM/WizardCoder-Python-7B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 55.5 | 51.6 | [Demo](http://47.103.63.15:50088/) | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> | |
|
| WizardCoder-3B-V1.0 | π€ <a href="https://huggingface.co/WizardLM/WizardCoder-3B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 34.8 |37.4 | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> | |
|
| WizardCoder-1B-V1.0 | π€ <a href="https://huggingface.co/WizardLM/WizardCoder-1B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 23.8 |28.6 | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> | |
|
|
|
|
|
- π₯ [08/11/2023] We release **WizardMath** Models. |
|
- π₯ Our **WizardMath-70B-V1.0** model slightly outperforms some closed-source LLMs on the GSM8K, including **ChatGPT 3.5**, **Claude Instant 1** and **PaLM 2 540B**. |
|
- π₯ Our **WizardMath-70B-V1.0** model achieves **81.6 pass@1** on the [GSM8k Benchmarks](https://github.com/openai/grade-school-math), which is **24.8** points higher than the SOTA open-source LLM. |
|
- π₯ Our **WizardMath-70B-V1.0** model achieves **22.7 pass@1** on the [MATH Benchmarks](https://github.com/hendrycks/math), which is **9.2** points higher than the SOTA open-source LLM. |
|
|
|
|
|
| Model | Checkpoint | Paper | GSM8k | MATH |Online Demo| License| |
|
| ----- |------| ---- |------|-------| ----- | ----- | |
|
| WizardMath-70B-V1.0 | π€ <a href="https://huggingface.co/WizardLM/WizardMath-70B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **81.6** | **22.7** |[Demo](http://47.103.63.15:50083/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> | |
|
| WizardMath-13B-V1.0 | π€ <a href="https://huggingface.co/WizardLM/WizardMath-13B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **63.9** | **14.0** |[Demo](http://47.103.63.15:50082/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> | |
|
| WizardMath-7B-V1.0 | π€ <a href="https://huggingface.co/WizardLM/WizardMath-7B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **54.9** | **10.7** | [Demo](http://47.103.63.15:50080/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a>| |
|
|
|
|
|
<font size=4> |
|
|
|
| <sup>Model</sup> | <sup>Checkpoint</sup> | <sup>Paper</sup> |<sup>MT-Bench</sup> | <sup>AlpacaEval</sup> | <sup>WizardEval</sup> | <sup>HumanEval</sup> | <sup>License</sup>| |
|
| ----- |------| ---- |------|-------| ----- | ----- | ----- | |
|
| <sup>WizardLM-13B-V1.2</sup> | <sup>π€ <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.2" target="_blank">HF Link</a> </sup>| | <sup>7.06</sup> | <sup>89.17%</sup> | <sup>101.4% </sup>|<sup>36.6 pass@1</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> | |
|
| <sup>WizardLM-13B-V1.1</sup> |<sup> π€ <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.1" target="_blank">HF Link</a> </sup> | | <sup>6.76</sup> |<sup>86.32%</sup> | <sup>99.3% </sup> |<sup>25.0 pass@1</sup>| <sup>Non-commercial</sup>| |
|
| <sup>WizardLM-30B-V1.0</sup> | <sup>π€ <a href="https://huggingface.co/WizardLM/WizardLM-30B-V1.0" target="_blank">HF Link</a></sup> | | <sup>7.01</sup> | | <sup>97.8% </sup> | <sup>37.8 pass@1</sup>| <sup>Non-commercial</sup> | |
|
| <sup>WizardLM-13B-V1.0</sup> | <sup>π€ <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.0" target="_blank">HF Link</a> </sup> | | <sup>6.35</sup> | <sup>75.31%</sup> | <sup>89.1% </sup> |<sup> 24.0 pass@1 </sup> | <sup>Non-commercial</sup>| |
|
| <sup>WizardLM-7B-V1.0 </sup>| <sup>π€ <a href="https://huggingface.co/WizardLM/WizardLM-7B-V1.0" target="_blank">HF Link</a> </sup> |<sup> π <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> </sup>| | | <sup>78.0% </sup> |<sup>19.1 pass@1 </sup>|<sup> Non-commercial</sup>| |
|
</font> |
|
|
|
**Repository**: https://github.com/nlpxucan/WizardLM |
|
|
|
**Twitter**: |
|
|
|
|
|
- π₯π₯π₯ [7/25/2023] We released **WizardLM V1.2** models. The **WizardLM-13B-V1.2** is here ([Demo_13B-V1.2](https://b7a19878988c8c73.gradio.app), [Demo_13B-V1.2_bak-1](https://d0a37a76e0ac4b52.gradio.app/), [Full Model Weight](https://huggingface.co/WizardLM/WizardLM-13B-V1.2)). Please checkout the [paper](https://arxiv.org/abs/2304.12244). |
|
- π₯π₯π₯ [7/25/2023] The **WizardLM-13B-V1.2** achieves **7.06** on [MT-Bench Leaderboard](https://chat.lmsys.org/?leaderboard), **89.17%** on [AlpacaEval Leaderboard](https://tatsu-lab.github.io/alpaca_eval/), and **101.4%** on [WizardLM Eval](https://github.com/nlpxucan/WizardLM/blob/main/WizardLM/data/WizardLM_testset.jsonl). (Note: MT-Bench and AlpacaEval are all self-test, will push update and request review. All tests are completed under their official settings.) |
|
|
|
β<b>Note for model system prompts usage:</b> |
|
|
|
|
|
<b>WizardLM</b> adopts the prompt format from <b>Vicuna</b> and supports **multi-turn** conversation. The prompt should be as following: |
|
|
|
``` |
|
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hi ASSISTANT: Hello.</s>USER: Who are you? ASSISTANT: I am WizardLM.</s>...... |
|
``` |
|
|
|
## Inference WizardLM Demo Script |
|
|
|
We provide the inference WizardLM demo code [here](https://github.com/nlpxucan/WizardLM/tree/main/demo). |
|
|
|
Please cite the paper if you use the data or code from WizardLM. |
|
|
|
``` |
|
@article{xu2023wizardlm, |
|
title={Wizardlm: Empowering large language models to follow complex instructions}, |
|
author={Xu, Can and Sun, Qingfeng and Zheng, Kai and Geng, Xiubo and Zhao, Pu and Feng, Jiazhan and Tao, Chongyang and Jiang, Daxin}, |
|
journal={arXiv preprint arXiv:2304.12244}, |
|
year={2023} |
|
} |
|
``` |
|
|
|
β<b>To commen concern about dataset:</b> |
|
|
|
Recently, there have been clear changes in the open-source policy and regulations of our overall organization's code, data, and models. |
|
|
|
|
|
Despite this, we have still worked hard to obtain opening the weights of the model first, but the data involves stricter auditing and is in review with our legal team . |
|
|
|
Our researchers have no authority to publicly release them without authorization. |
|
|
|
Thank you for your understanding. |