Wiam's picture
End of training
3e37a9e
metadata
license: apache-2.0
base_model: ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: wav2vec2-lg-xlsr-en-speech-emotion-recognition-finetuned-ravdess-v8
    results: []

wav2vec2-lg-xlsr-en-speech-emotion-recognition-finetuned-ravdess-v8

This model is a fine-tuned version of ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6778
  • Accuracy: 0.75

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0178 0.15 25 1.8431 0.6181
1.7082 0.31 50 1.5052 0.5833
1.4444 0.46 75 1.3458 0.5972
1.3888 0.62 100 1.2760 0.5972
1.1819 0.77 125 1.1075 0.6667
1.1615 0.93 150 1.0666 0.625
1.1659 1.08 175 1.3450 0.5694
0.9798 1.23 200 0.9866 0.6528
0.9893 1.39 225 0.9311 0.6806
0.9357 1.54 250 0.9783 0.6736
0.7998 1.7 275 0.7924 0.7014
0.7444 1.85 300 0.8980 0.6806
0.7648 2.01 325 0.8994 0.7153
0.607 2.16 350 0.9416 0.6597
0.5551 2.31 375 0.7791 0.7431
0.5495 2.47 400 0.7665 0.7431
0.5498 2.62 425 0.8017 0.7222
0.4887 2.78 450 0.6967 0.7639
0.5308 2.93 475 0.6857 0.7569

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3