Edit model card

image/jpeg

Version 2 of Weyaxi/Einstein-7B

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: merged_all.json
    ds_type: json
    type: alpaca
    conversation: chatml

dataset_prepared_path: last_run_prepared
val_set_size: 0.005
output_dir: ./einstein-v2-test-model

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

wandb_project: huggingface
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: Weyaxi/einstein-v2-test-model

save_safetensors: true

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4  
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 2
debug:

deepspeed: zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "<|im_end|>"
  unk_token: "<unk>"
tokens:
  - "<|im_start|>"

einstein-v2-test-model

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3838

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.0376 0.0 1 1.9459
0.5117 0.25 59 1.4740
0.5293 0.5 118 1.4116
0.5243 0.76 177 1.3838

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 63.48
AI2 Reasoning Challenge (25-Shot) 62.37
HellaSwag (10-Shot) 83.46
MMLU (5-Shot) 62.08
TruthfulQA (0-shot) 50.52
Winogrande (5-shot) 79.32
GSM8k (5-shot) 43.14
Downloads last month
246
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Weyaxi/Einstein-v2-7B

Finetuned
(690)
this model

Collection including Weyaxi/Einstein-v2-7B