Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Multilingual SimCSE

A contrastive learning model using parallel language pair training

By using parallel sentence pairs in different languages, the text is mapped to the same vector space for pre-training similar to Simcse
Firstly, the mDeBERTa model is used to load the pre-training parameters, and then the pre-training is carried out based on the CCMatrix data set.
Training data: 100 million parallel pairs
Taining equipment: 4 * 3090

Pipline Code

from transformers import AutoModel,AutoTokenizer

model = AutoModel.from_pretrained('WENGSYX/Multilingual_SimCSE')
tokenizer = AutoTokenizer.from_pretrained('WENGSYX/Multilingual_SimCSE')

word1 = tokenizer('Hello,world.',return_tensors='pt')
word2 = tokenizer('你好,世界',return_tensors='pt')
out1 = model(**word1).last_hidden_state.mean(1)
out2 = model(**word2).last_hidden_state.mean(1)
print(F.cosine_similarity(out1,out2))
----------------------------------------------------
tensor([0.8758], grad_fn=<DivBackward0>)

Train Code

from transformers import AutoModel,AutoTokenizer,AdamW

model = AutoModel.from_pretrained('WENGSYX/Multilingual_SimCSE')
tokenizer = AutoTokenizer.from_pretrained('WENGSYX/Multilingual_SimCSE')
optimizer = AdamW(model.parameters(),lr=1e-5)

def compute_loss(y_pred, t=0.05, device="cuda"):
    idxs = torch.arange(0, y_pred.shape[0], device=device)
    y_true = idxs + 1 - idxs % 2 * 2
    similarities = F.cosine_similarity(y_pred.unsqueeze(1), y_pred.unsqueeze(0), dim=2)
    similarities = similarities - torch.eye(y_pred.shape[0], device=device) * 1e12
    similarities = similarities / t
    loss = F.cross_entropy(similarities, y_true)
    return torch.mean(loss)
    
wordlist = [['Hello,world','你好,世界'],['Pensa che il bianco rappresenti la purezza.','Он думает, что белые символизируют чистоту.']]

input_ids, attention_mask, token_type_ids = [], [], []
for x in wordlist:
    text1 = tokenizer(x[0], padding='max_length', truncation=True, max_length=512)
    input_ids.append(text1['input_ids'])
    attention_mask.append(text1['attention_mask'])
    text2 = tokenizer(x[1], padding='max_length', truncation=True, max_length=512)
    input_ids.append(text2['input_ids'])
    attention_mask.append(text2['attention_mask'])

input_ids = torch.tensor(input_ids,device=device)
attention_mask = torch.tensor(attention_mask,device=device)

output = model(input_ids=input_ids,attention_mask=attention_mask)
output = output.last_hidden_state.mean(1)
loss = compute_loss(output)
loss.backward()

optimizer.step()
optimizer.zero_grad()
Downloads last month
104
Safetensors
Model size
278M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.