Edit model card

checkpoints_28_9_microsoft_deberta_V5

This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6408
  • Map@3: 0.8542
  • Accuracy: 0.76

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Map@3 Accuracy
1.6111 0.05 25 1.6092 0.5092 0.325
1.6139 0.11 50 1.6085 0.7 0.575
1.6096 0.16 75 1.5867 0.7583 0.645
1.2905 0.21 100 1.1496 0.7767 0.66
1.0263 0.27 125 0.8628 0.8067 0.705
0.9475 0.32 150 0.7252 0.8458 0.75
0.841 0.37 175 0.7018 0.8492 0.76
0.8301 0.43 200 0.7137 0.8492 0.755
0.823 0.48 225 0.6633 0.8525 0.755
0.8263 0.53 250 0.6751 0.8608 0.765
0.7962 0.59 275 0.6704 0.8542 0.755
0.8013 0.64 300 0.6583 0.8525 0.755
0.789 0.69 325 0.6497 0.8533 0.76
0.7979 0.75 350 0.6512 0.8525 0.755
0.7751 0.8 375 0.6445 0.8583 0.765
0.7993 0.85 400 0.6424 0.8558 0.765
0.7685 0.91 425 0.6408 0.8542 0.76
0.7807 0.96 450 0.6408 0.8542 0.76

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.0
  • Datasets 2.9.0
  • Tokenizers 0.13.3
Downloads last month
6
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for VuongQuoc/checkpoints_28_9_microsoft_deberta_V5

Finetuned
(116)
this model