metadata
library_name: transformers
language:
- mr
license: apache-2.0
base_model: Viraj008/whisper-small-mr_v4
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
- fsicoli/common_voice_19_0
- ylacombe/google-marathi
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper Small MR v5 - Viraj Patil
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: 'Common Voice 17.0, google/fleurs '
type: mozilla-foundation/common_voice_17_0
config: mr
split: None
args: 'config: mr, split: test'
metrics:
- name: Wer
type: wer
value: 34.12423353772328
Whisper Small MR v5 - Viraj Patil
This model is a fine-tuned version of Viraj008/whisper-small-mr_v4 on the Common Voice 17.0, google/fleurs dataset. It achieves the following results on the evaluation set:
- Loss: 0.2496
- Wer: 34.1242
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0573 | 0.5355 | 1000 | 0.2405 | 36.3370 |
0.0314 | 1.0710 | 2000 | 0.2484 | 35.4172 |
0.0298 | 1.6064 | 3000 | 0.2410 | 35.1640 |
0.0182 | 2.1419 | 4000 | 0.2496 | 34.1242 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0