whisper-small-mr_v4 / README.md
Viraj008's picture
End of training
430d9f4 verified
metadata
library_name: transformers
language:
  - mr
license: apache-2.0
base_model: Viraj008/whisper-small-mr_v3
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
  - fsicoli/common_voice_19_0
  - ylacombe/google-marathi
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Small MR v4 - Viraj Patil
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: mr
          split: None
          args: 'config: mr, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 34.49746734204212

Whisper Small MR v4 - Viraj Patil

This model is a fine-tuned version of Viraj008/whisper-small-mr_v3 on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2132
  • Wer: 34.4975

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1241 0.5355 1000 0.2290 40.3892
0.0681 1.0710 2000 0.2150 36.1037
0.0576 1.6064 3000 0.2081 35.2573
0.0399 2.1419 4000 0.2132 34.4975

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0