pegasus-samsum / README.md
Venkatesh4342's picture
Training complete!
39e7c1b
metadata
base_model: google/pegasus-large
tags:
  - generated_from_trainer
datasets:
  - samsum
metrics:
  - rouge
model-index:
  - name: pegasus-samsum
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: samsum
          type: samsum
          config: samsum
          split: validation
          args: samsum
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.4659

pegasus-samsum

This model is a fine-tuned version of google/pegasus-large on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4091
  • Rouge1: 0.4659
  • Rouge2: 0.2345
  • Rougel: 0.3946
  • Rougelsum: 0.3951
  • Gen Len: 17.7467

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.8025 0.27 500 1.4403 0.4466 0.2101 0.3832 0.3841 21.64
1.5936 0.54 1000 1.3766 0.4786 0.2374 0.4017 0.4013 21.24
1.5926 0.81 1500 1.3910 0.5118 0.2643 0.4282 0.4286 20.2267
1.5067 1.09 2000 1.4028 0.4982 0.261 0.4155 0.4157 20.4267
1.5712 1.36 2500 1.4236 0.4712 0.234 0.3964 0.3969 17.0
1.6177 1.63 3000 1.4151 0.4768 0.2382 0.4019 0.4022 16.28
1.6289 1.9 3500 1.4112 0.4744 0.2346 0.402 0.4033 17.0267
1.6326 2.17 4000 1.4096 0.4682 0.234 0.3985 0.3994 17.1333
1.5929 2.44 4500 1.4093 0.4637 0.2342 0.3939 0.3942 17.16
1.4351 2.72 5000 1.4090 0.4684 0.2346 0.3953 0.3955 17.8133
1.6445 2.99 5500 1.4091 0.4659 0.2345 0.3946 0.3951 17.7467

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3