metadata
base_model: BAAI/bge-base-en-v1.5
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
In the Annual Report on Form 10-K, the consolidated financial statements
are included immediately following Part IV and incorporated by reference.
sentences:
- >-
What movies contributed to higher revenue in 2023 compared to the
previous year?
- How are the financial statements incorporated in the 10-K report?
- >-
What was the ending store count for the Family Dollar segment after the
fiscal year ended January 28, 2023?
- source_sentence: >-
Readers are cautioned not to place undue reliance on forward-looking
statements, which speak only as of the date they are made. We undertake no
obligation to update or revise publicly any forward-looking statements,
whether because of new information, future events, or otherwise.
sentences:
- >-
What impact did the IRS deadline extension in 2023 have on Intuit's
fiscal results?
- >-
What risks are associated with relying on forward-looking statements
according to the provided text?
- >-
What were the total minimum lease payments and their net amounts after
imputed interest for operating and finance leases as of January 31,
2023?
- source_sentence: >-
CMS made significant changes to the structure of the hierarchical
condition category model in version 28, which may impact risk adjustment
factor scores for a larger percentage of Medicare Advantage beneficiaries
and could result in changes to beneficiary RAF scores with or without a
change in the patient’s health status.
sentences:
- >-
What significant regulatory change did CMS make to the hierarchical
condition category model in its version 28?
- >-
Which section of IBM’s 2023 Annual Report is reserved for Financial
Statements and Supplementary Data?
- What strategic goals are set for the Printing segment at HP Inc.?
- source_sentence: >-
In December 2023, the FCA published a consultation proposing to revise the
U.K. commodity derivatives framework. The FSMA 2023 reformed the U.K.’s
commodity derivatives regulatory regime including revoking the MIFID II
position limit requirements and transferring the powers to set position
limits and controls from the FCA to the operator of trading venues. The
FCA proposal requires U.K. trading venues to set position limits for
critical and related contracts, to establish accountability thresholds and
to report enhanced position data.
sentences:
- >-
What was the percentage increase in revenues from aviation services in
2023 compared to 2022?
- >-
What was the impairment loss recognized by the Company due to TDA
integration and restructuring efforts for the year ending December 31,
2023?
- >-
What changes did the FCA propose in its December 2023 consultation
regarding the U.K. commodity derivatives framework?
- source_sentence: >-
Operating cash flow provides the primary source of cash to fund operating
needs and capital expenditures.
sentences:
- >-
What is the primary source of cash used by the company to fund operating
needs and capital expenditures?
- >-
What kinds of products and services does the Company provide under the
AARP Program?
- >-
What was the total assets under supervision (AUS) for all categories
combined in 2023?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7128571428571429
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8385714285714285
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8657142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9128571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7128571428571429
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27952380952380956
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17314285714285713
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09128571428571428
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7128571428571429
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8385714285714285
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8657142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9128571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8160752408699454
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7850544217687072
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7883813094771759
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7085714285714285
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8314285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8571428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.91
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7085714285714285
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27714285714285714
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1714285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.091
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7085714285714285
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8314285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8571428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.91
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.810046642542136
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7782335600907029
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7817400926898996
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7057142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8214285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8614285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8957142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7057142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2738095238095238
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17228571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08957142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7057142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8214285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8614285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8957142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.803237369609097
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7734654195011333
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7778038646628423
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6871428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8085714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8428571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8942857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6871428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2695238095238095
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16857142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08942857142857143
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6871428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8085714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8428571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8942857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7913904723614839
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7585782312925171
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.762610071156596
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.66
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7714285714285715
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8085714285714286
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8714285714285714
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.66
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2571428571428571
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1617142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08714285714285713
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.66
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7714285714285715
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8085714285714286
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8714285714285714
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7614379134484182
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7269172335600907
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7319569628864667
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("ValentinaKim/bge-base-financial-matryoshka")
sentences = [
'Operating cash flow provides the primary source of cash to fund operating needs and capital expenditures.',
'What is the primary source of cash used by the company to fund operating needs and capital expenditures?',
'What kinds of products and services does the Company provide under the AARP Program?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7129 |
cosine_accuracy@3 |
0.8386 |
cosine_accuracy@5 |
0.8657 |
cosine_accuracy@10 |
0.9129 |
cosine_precision@1 |
0.7129 |
cosine_precision@3 |
0.2795 |
cosine_precision@5 |
0.1731 |
cosine_precision@10 |
0.0913 |
cosine_recall@1 |
0.7129 |
cosine_recall@3 |
0.8386 |
cosine_recall@5 |
0.8657 |
cosine_recall@10 |
0.9129 |
cosine_ndcg@10 |
0.8161 |
cosine_mrr@10 |
0.7851 |
cosine_map@100 |
0.7884 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7086 |
cosine_accuracy@3 |
0.8314 |
cosine_accuracy@5 |
0.8571 |
cosine_accuracy@10 |
0.91 |
cosine_precision@1 |
0.7086 |
cosine_precision@3 |
0.2771 |
cosine_precision@5 |
0.1714 |
cosine_precision@10 |
0.091 |
cosine_recall@1 |
0.7086 |
cosine_recall@3 |
0.8314 |
cosine_recall@5 |
0.8571 |
cosine_recall@10 |
0.91 |
cosine_ndcg@10 |
0.81 |
cosine_mrr@10 |
0.7782 |
cosine_map@100 |
0.7817 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7057 |
cosine_accuracy@3 |
0.8214 |
cosine_accuracy@5 |
0.8614 |
cosine_accuracy@10 |
0.8957 |
cosine_precision@1 |
0.7057 |
cosine_precision@3 |
0.2738 |
cosine_precision@5 |
0.1723 |
cosine_precision@10 |
0.0896 |
cosine_recall@1 |
0.7057 |
cosine_recall@3 |
0.8214 |
cosine_recall@5 |
0.8614 |
cosine_recall@10 |
0.8957 |
cosine_ndcg@10 |
0.8032 |
cosine_mrr@10 |
0.7735 |
cosine_map@100 |
0.7778 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6871 |
cosine_accuracy@3 |
0.8086 |
cosine_accuracy@5 |
0.8429 |
cosine_accuracy@10 |
0.8943 |
cosine_precision@1 |
0.6871 |
cosine_precision@3 |
0.2695 |
cosine_precision@5 |
0.1686 |
cosine_precision@10 |
0.0894 |
cosine_recall@1 |
0.6871 |
cosine_recall@3 |
0.8086 |
cosine_recall@5 |
0.8429 |
cosine_recall@10 |
0.8943 |
cosine_ndcg@10 |
0.7914 |
cosine_mrr@10 |
0.7586 |
cosine_map@100 |
0.7626 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.66 |
cosine_accuracy@3 |
0.7714 |
cosine_accuracy@5 |
0.8086 |
cosine_accuracy@10 |
0.8714 |
cosine_precision@1 |
0.66 |
cosine_precision@3 |
0.2571 |
cosine_precision@5 |
0.1617 |
cosine_precision@10 |
0.0871 |
cosine_recall@1 |
0.66 |
cosine_recall@3 |
0.7714 |
cosine_recall@5 |
0.8086 |
cosine_recall@10 |
0.8714 |
cosine_ndcg@10 |
0.7614 |
cosine_mrr@10 |
0.7269 |
cosine_map@100 |
0.732 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 6 tokens
- mean: 45.81 tokens
- max: 439 tokens
|
- min: 7 tokens
- mean: 20.26 tokens
- max: 43 tokens
|
- Samples:
positive |
anchor |
For the year ended December 31, 2023, Alphabet Inc. reported a net cash provided by operating activities of $101,746 million. |
What was the net cash provided by operating activities for Alphabet Inc. in 2023? |
Our History In 2000, ICE was founded with the idea of transforming energy markets by creating a network that removed barriers and provided greater transparency, efficiency and access. |
When was Intercontinental Exchange, Inc. founded, and what was its initial focus? |
Item 8. Financial Statements and Supplementary Data The index to Financial Statements and Supplementary Data is presented |
What is presented in Item 8 according to Financial Statements and Supplementary Data? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 16
gradient_accumulation_steps
: 32
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 8
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 32
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.9746 |
6 |
- |
0.7258 |
0.7501 |
0.7513 |
0.6860 |
0.7589 |
1.6244 |
10 |
1.4436 |
- |
- |
- |
- |
- |
1.9492 |
12 |
- |
0.7494 |
0.7733 |
0.7800 |
0.7187 |
0.7827 |
2.9239 |
18 |
- |
0.7601 |
0.7796 |
0.7813 |
0.7312 |
0.7897 |
3.2487 |
20 |
0.6159 |
- |
- |
- |
- |
- |
3.8985 |
24 |
- |
0.7626 |
0.7778 |
0.7817 |
0.732 |
0.7884 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.1.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}