Ussen's picture
End of training
b620b32
metadata
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - Ussen/swc-drc-katanga
metrics:
  - wer
model-index:
  - name: whisper-tiny-swc-drc-kat-2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Ussen/swc-drc-katanga
          type: Ussen/swc-drc-katanga
          config: default
          split: train
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.39136057941024316

whisper-tiny-swc-drc-kat-2

This model is a fine-tuned version of openai/whisper-medium on the Ussen/swc-drc-katanga dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8770
  • Wer Ortho: 39.7101
  • Wer: 0.3914

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.3735 2.96 1000 0.6459 48.5374 0.4783
0.081 5.93 2000 0.7478 38.5969 0.3797
0.0279 8.89 3000 0.8653 38.7523 0.3813
0.0189 11.85 4000 0.8770 39.7101 0.3914

Framework versions

  • Transformers 4.33.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.12.1