leaderboard-pr-bot's picture
Adding Evaluation Results
39cf41e verified
|
raw
history blame
8.65 kB
---
language:
- en
- de
- fr
- zh
- pt
- nl
- ru
- ko
- it
- es
license: cc-by-nc-4.0
metrics:
- comet
pipeline_tag: translation
model-index:
- name: TowerInstruct-Mistral-7B-v0.2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 28.43
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Unbabel/TowerInstruct-Mistral-7B-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 14.22
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Unbabel/TowerInstruct-Mistral-7B-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 1.59
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Unbabel/TowerInstruct-Mistral-7B-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 0.0
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Unbabel/TowerInstruct-Mistral-7B-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 15.96
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Unbabel/TowerInstruct-Mistral-7B-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 10.76
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Unbabel/TowerInstruct-Mistral-7B-v0.2
name: Open LLM Leaderboard
---
# Model Card for TowerInstruct-Mistral-7B-v0.2
## Model Details
### Model Description
TowerInstruct-Mistral-7B-v0.2 is a language model that results from fine-tuning a Mistral version of TowerBase on the TowerBlocks supervised fine-tuning dataset.
The model is trained to handle several translation-related tasks, such as general machine translation (e.g., sentence- and paragraph/document-level translation, terminology-aware translation, context-aware translation), automatic post edition, named-entity recognition, gramatical error correction, and paraphrase generation.
This model has performance comparable to [TowerInstruct-13B-v0.2](https://huggingface.co/Unbabel/TowerInstruct-13B-v0.1), while being half the size. Check out our [paper in COLM 2024](https://openreview.net/pdf?id=EHPns3hVkj).
- **Developed by:** Unbabel, Instituto Superior Técnico, CentraleSupélec University of Paris-Saclay
- **Model type:** A 7B parameter model fine-tuned on a mix of publicly available, synthetic datasets on translation-related tasks, as well as conversational datasets and code instructions.
- **Language(s) (NLP):** English, Portuguese, Spanish, French, German, Dutch, Italian, Korean, Chinese, Russian
- **License:** CC-BY-NC-4.0
## Intended uses & limitations
The model was initially fine-tuned on a filtered and preprocessed supervised fine-tuning dataset ([TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.1)), which contains a diverse range of data sources:
- Translation (sentence and paragraph-level)
- Automatic Post Edition
- Machine Translation Evaluation
- Context-aware Translation
- Terminology-aware Translation
- Multi-reference Translation
- Named-entity Recognition
- Paraphrase Generation
- Synthetic Chat data
- Code instructions
You can find the dataset and all data sources of [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.1) here.
Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
```python
# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="Unbabel/TowerInstruct-Mistral-7B-v0.2", torch_dtype=torch.bfloat16, device_map="auto")
# We use the tokenizer’s chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{"role": "user", "content": "Translate the following text from Portuguese into English.\nPortuguese: Um grupo de investigadores lançou um novo modelo para tarefas relacionadas com tradução.\nEnglish:"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=False)
print(outputs[0]["generated_text"])
# <|im_start|>user
# Translate the following text from Portuguese into English.
# Portuguese: Um grupo de investigadores lançou um novo modelo para tarefas relacionadas com tradução.
# English:<|im_end|>
# <|im_start|>assistant
# A group of researchers has launched a new model for translation-related tasks.
```
### Out-of-Scope Use
The model is not guaranteed to perform for languages other than the 10 languages it supports. Even though we trained the model on conversational data and code instructions, it is not intended to be used as a conversational chatbot or code assistant.
We are currently working on improving quality and consistency on document-level translation. This model should is not intended to be use as a document-level translator.
## Bias, Risks, and Limitations
TowerInstruct-Mistral-7B-v0.2 has not been aligned to human preferences, so the model may generate problematic outputs (e.g., hallucinations, harmful content, or false statements).
## Prompt Format
TowerInstruct-Mistral-7B-v0.2 was trained using the ChatML prompt templates without any system prompts. An example follows below:
```
<|im_start|>user
{USER PROMPT}<|im_end|>
<|im_start|>assistant
{MODEL RESPONSE}<|im_end|>
<|im_start|>user
[...]
```
### Supervised tasks
The prompts for all supervised tasks can be found in [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.1). We have used multiple prompt templates for each task. While different prompts may offer different outputs, the difference in downstream performance should be very minimal.
## Training Details
### Training Data
Link to [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.1).
## Citation
```bibtex
@inproceedings{
alves2024tower,
title={Tower: An Open Multilingual Large Language Model for Translation-Related Tasks},
author={Duarte Miguel Alves and Jos{\'e} Pombal and Nuno M Guerreiro and Pedro Henrique Martins and Jo{\~a}o Alves and Amin Farajian and Ben Peters and Ricardo Rei and Patrick Fernandes and Sweta Agrawal and Pierre Colombo and Jos{\'e} G. C. de Souza and Andre Martins},
booktitle={First Conference on Language Modeling},
year={2024},
url={https://openreview.net/forum?id=EHPns3hVkj}
}
```
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Unbabel__TowerInstruct-Mistral-7B-v0.2)
| Metric |Value|
|-------------------|----:|
|Avg. |11.83|
|IFEval (0-Shot) |28.43|
|BBH (3-Shot) |14.22|
|MATH Lvl 5 (4-Shot)| 1.59|
|GPQA (0-shot) | 0.00|
|MuSR (0-shot) |15.96|
|MMLU-PRO (5-shot) |10.76|