File size: 4,270 Bytes
ece032c 57c555c ece032c 591097e 57c555c 591097e 57c555c ece032c 591097e ece032c 7427deb ece032c 7427deb a7e8c2c e685f90 dadcbe0 591097e e685f90 08748c3 e685f90 6558c20 555d47d 333f437 510a7fc 1a89701 555d47d 591097e ece032c 57c555c ece032c 333f437 ece032c c0ec00c ece032c 57c555c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
---
base_model: google/pegasus-x-base
tags:
- generated_from_trainer
datasets:
- ccdv/arxiv-summarization
model-index:
- name: Paper-Summarization-ArXiv
results:
- task:
name: Summarization
type: summarization
dataset:
name: ccdv/arxiv-summarization
type: ccdv/arxiv-summarization
config: section
split: test
args: section
metrics:
- name: ROUGE-1
type: rouge
value: 43.2305
- name: ROUGE-2
type: rouge
value: 16.6571
- name: ROUGE-L
type: rouge
value: 24.4315
- name: ROUGE-LSum
type: rouge
value: 33.9399
license: bigscience-openrail-m
language:
- en
metrics:
- rouge
library_name: transformers
pipeline_tag: summarization
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Paper-Summarization-ArXiv
This model is a fine-tuned version of [google/pegasus-x-base](https://huggingface.co/google/pegasus-x-base) on the arxiv-summarization dataset.
**Base Model**: [Pegasus-x-base (State-of-the-art for Long Context Summarization)](https://huggingface.co/google/pegasus-x-base)
**Finetuning Dataset**:
- We used **full of ArXiv Dataset (Cohan et al., 2018, NAACL-HLT 2018)** [[PDF]](https://arxiv.org/abs/1804.05685)
- (Full length is 200,000+)
**GPU**: (RTX A6000) x 1
**Train time**: About 120 hours for 5 epochs
**Test time**: About 8 hours for test dataset.
## Intended uses & limitations
- **Research Paper Summarization**
## Compare to Baseline
- Pegasus-X-base **zero-shot** Performance:
- R-1 | R-2 | R-L | R-LSUM : 6.2269 | 0.7894 | 4.6905 | 5.4591
- **This model**
- R-1 | R-2 | R-L | R-LSUM : 43.2305 | 16.6571 | 24.4315 | 33.9399 at
```(python)
model.generate(input_ids =inputs["input_ids"].to(device),
attention_mask=inputs["attention_mask"].to(device),
length_penalty=1, num_beams=2, max_length=128*4,min_length=150, no_repeat_ngram_size= 3, top_k=25,top_p=0.95)
```
- R-1 | R-2 | R-L | R-LSUM : 40.8486 | 16.3717 | 25.2937 | 33.6923 (refer to **PEGASUS-X's [paper](https://arxiv.org/pdf/2208.04347.pdf)**) at
```(python)
model.generate(input_ids =inputs["input_ids"].to(device),
attention_mask=inputs["attention_mask"].to(device),
length_penalty=1, num_beams=1, max_length=128*2,top_p=1)
```
- R-1 | R-2 | R-L | R-LSUM : 38.1317 | 15.0357 | 23.0286 | 30.9938 (**Diverse Beam-Search Decoding**) at
```(python)
model.generate(input_ids =inputs["input_ids"].to(device),
attention_mask=inputs["attention_mask"].to(device),
num_beam_groups=5,diversity_penalty=1.0,num_beams=5,min_length=150,max_length=128*4)
```
- R-1 | R-2 | R-L | R-LSUM : 43.3017 | 16.6023 | 24.1867 | 33.7019 at
```(python)
model.generate(input_ids =inputs["input_ids"].to(device),
attention_mask=inputs["attention_mask"].to(device),
length_penalty=1.2, num_beams=4, max_length=128*4,min_length=150, no_repeat_ngram_size= 3, temperature=0.9,top_k=50,top_p=0.92)
```
## Training procedure
We use huggingface-based environment such as datasets, trainer, etc.
### Training hyperparameters
The following hyperparameters were used during training:
```(python)
learning_rate: 1e-05,
train_batch_size: 1,
eval_batch_size: 1,
seed: 42,
gradient_accumulation_steps: 64,
total_train_batch_size: 64,
optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08,
lr_scheduler_type: linear,
lr_scheduler_warmup_steps: 1586,
num_epochs: 5
```
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.6153 | 1.0 | 3172 | 2.1045 |
| 2.202 | 2.0 | 6344 | 2.0511 |
| 2.1547 | 3.0 | 9516 | 2.0282 |
| 2.132 | 4.0 | 12688 | 2.0164 |
| 2.1222 | 5.0 | 15860 | 2.0127 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.2 |