UNIST-Eunchan commited on
Commit
57c555c
1 Parent(s): 591097e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -9
README.md CHANGED
@@ -3,7 +3,7 @@ base_model: google/pegasus-x-base
3
  tags:
4
  - generated_from_trainer
5
  datasets:
6
- - arxiv-summarization
7
  model-index:
8
  - name: Paper-Summarization-ArXiv
9
  results:
@@ -25,13 +25,17 @@ model-index:
25
  value: 16.6571
26
  - name: ROUGE-L
27
  type: rouge
28
- value: 24.4315
29
  - name: ROUGE-LSum
30
  type: rouge
31
  value: 33.9399
32
-
33
-
34
-
 
 
 
 
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -72,14 +76,15 @@ Paper Summarization
72
 
73
 
74
 
75
-
76
-
77
  ## Training and evaluation data
78
 
79
- More information needed
80
 
81
  ## Training procedure
82
 
 
 
 
83
  ### Training hyperparameters
84
 
85
  The following hyperparameters were used during training:
@@ -100,4 +105,4 @@ The following hyperparameters were used during training:
100
  - Transformers 4.32.1
101
  - Pytorch 2.0.1
102
  - Datasets 2.12.0
103
- - Tokenizers 0.13.2
 
3
  tags:
4
  - generated_from_trainer
5
  datasets:
6
+ - ccdv/arxiv-summarization
7
  model-index:
8
  - name: Paper-Summarization-ArXiv
9
  results:
 
25
  value: 16.6571
26
  - name: ROUGE-L
27
  type: rouge
28
+ value: 24.4315
29
  - name: ROUGE-LSum
30
  type: rouge
31
  value: 33.9399
32
+ license: bigscience-openrail-m
33
+ language:
34
+ - en
35
+ metrics:
36
+ - rouge
37
+ library_name: transformers
38
+ pipeline_tag: summarization
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
76
 
77
 
78
 
 
 
79
  ## Training and evaluation data
80
 
81
+ We use full of dataset 'ccdv/arxiv-summarization'.
82
 
83
  ## Training procedure
84
 
85
+ We use huggingface-based environment such as datasets, trainer, etc.
86
+
87
+
88
  ### Training hyperparameters
89
 
90
  The following hyperparameters were used during training:
 
105
  - Transformers 4.32.1
106
  - Pytorch 2.0.1
107
  - Datasets 2.12.0
108
+ - Tokenizers 0.13.2