leaderboard-pt-pr-bot's picture
Adding the Open Portuguese LLM Leaderboard Evaluation Results
34bbd8c verified
|
raw
history blame
7.54 kB
metadata
language:
  - en
license: gemma
datasets:
  - openbmb/UltraFeedback
pipeline_tag: text-generation
model-index:
  - name: Gemma-2-9B-It-SPPO-Iter2
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: ENEM Challenge (No Images)
          type: eduagarcia/enem_challenge
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 73.69
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BLUEX (No Images)
          type: eduagarcia-temp/BLUEX_without_images
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 63
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: OAB Exams
          type: eduagarcia/oab_exams
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 53.12
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Assin2 RTE
          type: assin2
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: f1_macro
            value: 94.07
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Assin2 STS
          type: eduagarcia/portuguese_benchmark
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: pearson
            value: 78.28
            name: pearson
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: FaQuAD NLI
          type: ruanchaves/faquad-nli
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: f1_macro
            value: 77.46
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HateBR Binary
          type: ruanchaves/hatebr
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 87.65
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: PT Hate Speech Binary
          type: hate_speech_portuguese
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 71.13
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: tweetSentBR
          type: eduagarcia/tweetsentbr_fewshot
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 69.4
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
          name: Open Portuguese LLM Leaderboard

Self-Play Preference Optimization for Language Model Alignment (https://arxiv.org/abs/2405.00675)

Gemma-2-9B-It-SPPO-Iter2

This model was developed using Self-Play Preference Optimization at iteration 2, based on the google/gemma-2-9b-it architecture as starting point. We utilized the prompt sets from the openbmb/UltraFeedback dataset, splited to 3 parts for 3 iterations by snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset. All responses used are synthetic.

Terms of Use: Terms

Links to Other Models

Model Description

  • Model type: A 8B parameter GPT-like model fine-tuned on synthetic datasets.
  • Language(s) (NLP): Primarily English
  • License: Apache-2.0
  • Finetuned from model: google/gemma-2-9b-it

AlpacaEval Leaderboard Evaluation Results

Model LC. Win Rate Win Rate Avg. Length
Llama-3-8B-SPPO Iter1 48.70 40.76 1669
Llama-3-8B-SPPO Iter2 50.93 44.64 1759
Llama-3-8B-SPPO Iter3 53.27 47.74 1803

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • eta: 1000
  • per_device_train_batch_size: 8
  • gradient_accumulation_steps: 1
  • seed: 42
  • distributed_type: deepspeed_zero3
  • num_devices: 8
  • optimizer: RMSProp
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_train_epochs: 1.0

Citation

@misc{wu2024self,
      title={Self-Play Preference Optimization for Language Model Alignment}, 
      author={Wu, Yue and Sun, Zhiqing and Yuan, Huizhuo and Ji, Kaixuan and Yang, Yiming and Gu, Quanquan},
      year={2024},
      eprint={2405.00675},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Open Portuguese LLM Leaderboard Evaluation Results

Detailed results can be found here and on the 🚀 Open Portuguese LLM Leaderboard

Metric Value
Average 74.2
ENEM Challenge (No Images) 73.69
BLUEX (No Images) 63
OAB Exams 53.12
Assin2 RTE 94.07
Assin2 STS 78.28
FaQuAD NLI 77.46
HateBR Binary 87.65
PT Hate Speech Binary 71.13
tweetSentBR 69.40