roberta-base-NER / README.md
Tirendaz's picture
Update README.md
c0e63d0
---
license: mit
base_model: xlm-roberta-base
datasets:
- xtreme
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta-base-NER
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
config: PAN-X.en
split: validation
args: PAN-X.en
metrics:
- name: Precision
type: precision
value: 0.8003614625330182
- name: Recall
type: recall
value: 0.8110735418427726
- name: F1
type: f1
value: 0.8056818976978517
- name: Accuracy
type: accuracy
value: 0.9194332683336213
language:
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-NER
## Model description
**xlm-roberta-base-multilingual-cased-ner** is a **Named Entity Recognition** model based on a fine-tuned XLM-RoBERTa base model.
It has been trained to recognize three types of entities: location (LOC), organizations (ORG), and person (PER).
Specifically, this model is a *XLMRoreberta-base-multilingual-cased* model that was fine-tuned on an aggregation of 10 high-resourced languages.
## Intended uses & limitations
#### How to use
You can use this model with Transformers *pipeline* for NER.
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("Tirendaz/multilingual-xlm-roberta-for-ner")
model = AutoModelForTokenClassification.from_pretrained("Tirendaz/multilingual-xlm-roberta-for-ner")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "My name is Wolfgang and I live in Berlin"
ner_results = nlp(example)
print(ner_results)
```
Abbreviation|Description
-|-
O|Outside of a named entity
B-PER |Beginning of a person’s name right after another person’s name
I-PER |Person’s name
B-ORG |Beginning of an organisation right after another organisation
I-ORG |Organisation
B-LOC |Beginning of a location right after another location
I-LOC |Location
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 417 | 0.3359 | 0.7286 | 0.7675 | 0.7476 | 0.8991 |
| 0.4227 | 2.0 | 834 | 0.2951 | 0.7711 | 0.7980 | 0.7843 | 0.9131 |
| 0.2818 | 3.0 | 1251 | 0.2824 | 0.7852 | 0.8076 | 0.7962 | 0.9174 |
| 0.2186 | 4.0 | 1668 | 0.2853 | 0.7934 | 0.8150 | 0.8041 | 0.9193 |
| 0.1801 | 5.0 | 2085 | 0.2935 | 0.8004 | 0.8111 | 0.8057 | 0.9194 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3