language:
- en
license: apache-2.0
datasets:
- cerebras/SlimPajama-627B
- bigcode/starcoderdata
model-index:
- name: TinyLlama-1.1B-intermediate-step-955k-token-2T
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 30.29
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 54.84
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 26.47
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 36.07
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 58.33
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 1.36
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T
name: Open LLM Leaderboard
https://github.com/jzhang38/TinyLlama
The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs ππ. The training has started on 2023-09-01.
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
This Model
This is an intermediate checkpoint with 995K steps and 2003B tokens.
Releases Schedule
We will be rolling out intermediate checkpoints following the below schedule. We also include some baseline models for comparison.
Date | HF Checkpoint | Tokens | Step | HellaSwag Acc_norm |
---|---|---|---|---|
Baseline | StableLM-Alpha-3B | 800B | -- | 38.31 |
Baseline | Pythia-1B-intermediate-step-50k-105b | 105B | 50k | 42.04 |
Baseline | Pythia-1B | 300B | 143k | 47.16 |
2023-09-04 | TinyLlama-1.1B-intermediate-step-50k-105b | 105B | 50k | 43.50 |
2023-09-16 | -- | 500B | -- | -- |
2023-10-01 | -- | 1T | -- | -- |
2023-10-16 | -- | 1.5T | -- | -- |
2023-10-31 | -- | 2T | -- | -- |
2023-11-15 | -- | 2.5T | -- | -- |
2023-12-01 | -- | 3T | -- | -- |
How to use
You will need the transformers>=4.31 Do check the TinyLlama github page for more information.
from transformers import AutoTokenizer
import transformers
import torch
model = "TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
sequences = pipeline(
'The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs ππ. The training has started on 2023-09-01.',
do_sample=True,
top_k=10,
num_return_sequences=1,
repetition_penalty=1.5,
eos_token_id=tokenizer.eos_token_id,
max_length=500,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 34.56 |
AI2 Reasoning Challenge (25-Shot) | 30.29 |
HellaSwag (10-Shot) | 54.84 |
MMLU (5-Shot) | 26.47 |
TruthfulQA (0-shot) | 36.07 |
Winogrande (5-shot) | 58.33 |
GSM8k (5-shot) | 1.36 |