longformer-spans / README.md
Theoreticallyhugo's picture
trainer: training complete at 2024-10-29 15:21:33.939686.
827d75a verified
metadata
library_name: transformers
license: apache-2.0
base_model: allenai/longformer-base-4096
tags:
  - generated_from_trainer
datasets:
  - stab-gurevych-essays
metrics:
  - accuracy
model-index:
  - name: longformer-spans
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: stab-gurevych-essays
          type: stab-gurevych-essays
          config: spans
          split: train[0%:20%]
          args: spans
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9739926865110556

longformer-spans

This model is a fine-tuned version of allenai/longformer-base-4096 on the stab-gurevych-essays dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0856
  • B: {'precision': 0.8861301369863014, 'recall': 0.913503971756399, 'f1-score': 0.8996088657105606, 'support': 1133.0}
  • I: {'precision': 0.9856182499448976, 'recall': 0.978661705969251, 'f1-score': 0.9821276595744681, 'support': 18277.0}
  • O: {'precision': 0.963097033685269, 'recall': 0.9722870774540656, 'f1-score': 0.9676702364113963, 'support': 9851.0}
  • Accuracy: 0.9740
  • Macro avg: {'precision': 0.9449484735388226, 'recall': 0.9548175850599052, 'f1-score': 0.9498022538988083, 'support': 29261.0}
  • Weighted avg: {'precision': 0.9741840360302777, 'recall': 0.9739926865110556, 'f1-score': 0.9740652601681857, 'support': 29261.0}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss B I O Accuracy Macro avg Weighted avg
No log 1.0 41 0.2075 {'precision': 0.8258258258258259, 'recall': 0.7281553398058253, 'f1-score': 0.773921200750469, 'support': 1133.0} {'precision': 0.9305934158104424, 'recall': 0.9712753734201456, 'f1-score': 0.9504992905522983, 'support': 18277.0} {'precision': 0.9388199433921185, 'recall': 0.8754441173484926, 'f1-score': 0.9060251089982665, 'support': 9851.0} 0.9296 {'precision': 0.8984130616761289, 'recall': 0.8582916101914878, 'f1-score': 0.8768152001003445, 'support': 29261.0} {'precision': 0.9293063047668868, 'recall': 0.9295991251153413, 'f1-score': 0.9286894365406706, 'support': 29261.0}
No log 2.0 82 0.1039 {'precision': 0.7817781043350478, 'recall': 0.93909973521624, 'f1-score': 0.8532477947072975, 'support': 1133.0} {'precision': 0.9750846901977925, 'recall': 0.9764184494173004, 'f1-score': 0.9757511140271741, 'support': 18277.0} {'precision': 0.9661387789122734, 'recall': 0.9413257537305857, 'f1-score': 0.9535708776800864, 'support': 9851.0} 0.9632 {'precision': 0.9076671911483712, 'recall': 0.9522813127880422, 'f1-score': 0.927523262138186, 'support': 29261.0} {'precision': 0.9645880382085871, 'recall': 0.9631591538224941, 'f1-score': 0.9635405344487392, 'support': 29261.0}
No log 3.0 123 0.0875 {'precision': 0.8751054852320675, 'recall': 0.9152691968225949, 'f1-score': 0.8947368421052632, 'support': 1133.0} {'precision': 0.9870288248337029, 'recall': 0.9742299064397877, 'f1-score': 0.9805876036016191, 'support': 18277.0} {'precision': 0.9561578318055002, 'recall': 0.9741143031164349, 'f1-score': 0.9650525468899281, 'support': 9851.0} 0.9719 {'precision': 0.9394307139570902, 'recall': 0.9545378021262724, 'f1-score': 0.9467923308656035, 'support': 29261.0} {'precision': 0.972302079469926, 'recall': 0.9719080004101022, 'f1-score': 0.9720333929990342, 'support': 29261.0}
No log 4.0 164 0.0825 {'precision': 0.8817021276595745, 'recall': 0.9143865842894969, 'f1-score': 0.8977469670710572, 'support': 1133.0} {'precision': 0.9845409033393849, 'recall': 0.9791541281391913, 'f1-score': 0.9818401272837, 'support': 18277.0} {'precision': 0.9638712281764052, 'recall': 0.9695462389605116, 'f1-score': 0.9667004048582996, 'support': 9851.0} 0.9734 {'precision': 0.9433714197251216, 'recall': 0.9543623171297333, 'f1-score': 0.9487624997376857, 'support': 29261.0} {'precision': 0.9736002894548376, 'recall': 0.9734117084173474, 'f1-score': 0.9734870649777793, 'support': 29261.0}
No log 5.0 205 0.0856 {'precision': 0.8861301369863014, 'recall': 0.913503971756399, 'f1-score': 0.8996088657105606, 'support': 1133.0} {'precision': 0.9856182499448976, 'recall': 0.978661705969251, 'f1-score': 0.9821276595744681, 'support': 18277.0} {'precision': 0.963097033685269, 'recall': 0.9722870774540656, 'f1-score': 0.9676702364113963, 'support': 9851.0} 0.9740 {'precision': 0.9449484735388226, 'recall': 0.9548175850599052, 'f1-score': 0.9498022538988083, 'support': 29261.0} {'precision': 0.9741840360302777, 'recall': 0.9739926865110556, 'f1-score': 0.9740652601681857, 'support': 29261.0}

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.2
  • Tokenizers 0.20.1