|
--- |
|
license: apache-2.0 |
|
base_model: allenai/longformer-base-4096 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- essays_su_g |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: longformer-spans |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: essays_su_g |
|
type: essays_su_g |
|
config: spans |
|
split: test |
|
args: spans |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9360779676806765 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# longformer-spans |
|
|
|
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1786 |
|
- B: {'precision': 0.8126064735945485, 'recall': 0.9008498583569405, 'f1-score': 0.8544558889386475, 'support': 1059.0} |
|
- I: {'precision': 0.9468377121729875, 'recall': 0.9617069701280228, 'f1-score': 0.9542144187884605, 'support': 17575.0} |
|
- O: {'precision': 0.9307744259342638, 'recall': 0.8915363881401617, 'f1-score': 0.9107329698771959, 'support': 9275.0} |
|
- Accuracy: 0.9361 |
|
- Macro avg: {'precision': 0.8967395372339334, 'recall': 0.918031072208375, 'f1-score': 0.9064677592014346, 'support': 27909.0} |
|
- Weighted avg: {'precision': 0.9364060284323041, 'recall': 0.9360779676806765, 'f1-score': 0.9359789133327677, 'support': 27909.0} |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | B | I | O | Accuracy | Macro avg | Weighted avg | |
|
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:| |
|
| No log | 1.0 | 41 | 0.2836 | {'precision': 0.7968253968253968, 'recall': 0.4740321057601511, 'f1-score': 0.5944345766725874, 'support': 1059.0} | {'precision': 0.9161490683229814, 'recall': 0.9399715504978663, 'f1-score': 0.9279074339315303, 'support': 17575.0} | {'precision': 0.8717421866551314, 'recall': 0.8691105121293801, 'f1-score': 0.8704243602202786, 'support': 9275.0} | 0.8987 | {'precision': 0.8615722172678364, 'recall': 0.7610380561291326, 'f1-score': 0.7975887902747987, 'support': 27909.0} | {'precision': 0.8968636193428943, 'recall': 0.8987423411802644, 'f1-score': 0.8961505359950553, 'support': 27909.0} | |
|
| No log | 2.0 | 82 | 0.2022 | {'precision': 0.7857142857142857, 'recall': 0.8621340887629839, 'f1-score': 0.8221521837010356, 'support': 1059.0} | {'precision': 0.9355464420305919, 'recall': 0.9605120910384068, 'f1-score': 0.9478649035627053, 'support': 17575.0} | {'precision': 0.9268068482132598, 'recall': 0.8696495956873316, 'f1-score': 0.8973189453776839, 'support': 9275.0} | 0.9266 | {'precision': 0.8826891919860458, 'recall': 0.8974319251629076, 'f1-score': 0.889112010880475, 'support': 27909.0} | {'precision': 0.9269566686171867, 'recall': 0.926582822745351, 'f1-score': 0.9262968240005718, 'support': 27909.0} | |
|
| No log | 3.0 | 123 | 0.1852 | {'precision': 0.7871125611745514, 'recall': 0.9112370160528801, 'f1-score': 0.8446389496717724, 'support': 1059.0} | {'precision': 0.9400952275495515, 'recall': 0.966145092460882, 'f1-score': 0.9529421668490613, 'support': 17575.0} | {'precision': 0.940726133859181, 'recall': 0.8743935309973045, 'f1-score': 0.9063477872150201, 'support': 9275.0} | 0.9336 | {'precision': 0.8893113075277613, 'recall': 0.9172585465036889, 'f1-score': 0.9013096345786179, 'support': 27909.0} | {'precision': 0.9345000078114988, 'recall': 0.9335698161883264, 'f1-score': 0.9333479148838716, 'support': 27909.0} | |
|
| No log | 4.0 | 164 | 0.1786 | {'precision': 0.8126064735945485, 'recall': 0.9008498583569405, 'f1-score': 0.8544558889386475, 'support': 1059.0} | {'precision': 0.9468377121729875, 'recall': 0.9617069701280228, 'f1-score': 0.9542144187884605, 'support': 17575.0} | {'precision': 0.9307744259342638, 'recall': 0.8915363881401617, 'f1-score': 0.9107329698771959, 'support': 9275.0} | 0.9361 | {'precision': 0.8967395372339334, 'recall': 0.918031072208375, 'f1-score': 0.9064677592014346, 'support': 27909.0} | {'precision': 0.9364060284323041, 'recall': 0.9360779676806765, 'f1-score': 0.9359789133327677, 'support': 27909.0} | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.2 |
|
|