TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)
Openchat 3.5 1210 - AWQ
- Model creator: OpenChat
- Original model: Openchat 3.5 1210
Description
This repo contains AWQ model files for OpenChat's Openchat 3.5 1210.
These files were quantised using hardware kindly provided by Massed Compute.
About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
It is supported by:
- Text Generation Webui - using Loader: AutoAWQ
- vLLM - version 0.2.2 or later for support for all model types.
- Hugging Face Text Generation Inference (TGI)
- Transformers version 4.35.0 and later, from any code or client that supports Transformers
- AutoAWQ - for use from Python code
Repositories available
- AWQ model(s) for GPU inference.
- GPTQ models for GPU inference, with multiple quantisation parameter options.
- 2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference
- OpenChat's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Prompt template: OpenChat-Correct
GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant:
Provided files, and AWQ parameters
I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
Models are released as sharded safetensors files.
Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
---|---|---|---|---|---|
main | 4 | 128 | VMware Open Instruct | 4096 | 4.15 GB |
How to easily download and use this model in text-generation-webui
Please make sure you're using the latest version of text-generation-webui.
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
- Click the Model tab.
- Under Download custom model or LoRA, enter
TheBloke/openchat-3.5-1210-AWQ
. - Click Download.
- The model will start downloading. Once it's finished it will say "Done".
- In the top left, click the refresh icon next to Model.
- In the Model dropdown, choose the model you just downloaded:
openchat-3.5-1210-AWQ
- Select Loader: AutoAWQ.
- Click Load, and the model will load and is now ready for use.
- If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
- Once you're ready, click the Text Generation tab and enter a prompt to get started!
Multi-user inference server: vLLM
Documentation on installing and using vLLM can be found here.
- Please ensure you are using vLLM version 0.2 or later.
- When using vLLM as a server, pass the
--quantization awq
parameter.
For example:
python3 -m vllm.entrypoints.api_server --model TheBloke/openchat-3.5-1210-AWQ --quantization awq --dtype auto
- When using vLLM from Python code, again set
quantization=awq
.
For example:
from vllm import LLM, SamplingParams
prompts = [
"Tell me about AI",
"Write a story about llamas",
"What is 291 - 150?",
"How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
]
prompt_template=f'''GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant:
'''
prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(model="TheBloke/openchat-3.5-1210-AWQ", quantization="awq", dtype="auto")
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
Multi-user inference server: Hugging Face Text Generation Inference (TGI)
Use TGI version 1.1.0 or later. The official Docker container is: ghcr.io/huggingface/text-generation-inference:1.1.0
Example Docker parameters:
--model-id TheBloke/openchat-3.5-1210-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
pip3 install huggingface-hub
from huggingface_hub import InferenceClient
endpoint_url = "https://your-endpoint-url-here"
prompt = "Tell me about AI"
prompt_template=f'''GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant:
'''
client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1)
print(f"Model output: ", response)
Inference from Python code using Transformers
Install the necessary packages
- Requires: Transformers 4.35.0 or later.
- Requires: AutoAWQ 0.1.6 or later.
pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
If you have problems installing AutoAWQ using the pre-built wheels, install it from source instead:
pip3 uninstall -y autoawq
git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip3 install .
Transformers example code (requires Transformers 4.35.0 and later)
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
model_name_or_path = "TheBloke/openchat-3.5-1210-AWQ"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
low_cpu_mem_usage=True,
device_map="cuda:0"
)
# Using the text streamer to stream output one token at a time
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
prompt = "Tell me about AI"
prompt_template=f'''GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant:
'''
# Convert prompt to tokens
tokens = tokenizer(
prompt_template,
return_tensors='pt'
).input_ids.cuda()
generation_params = {
"do_sample": True,
"temperature": 0.7,
"top_p": 0.95,
"top_k": 40,
"max_new_tokens": 512,
"repetition_penalty": 1.1
}
# Generate streamed output, visible one token at a time
generation_output = model.generate(
tokens,
streamer=streamer,
**generation_params
)
# Generation without a streamer, which will include the prompt in the output
generation_output = model.generate(
tokens,
**generation_params
)
# Get the tokens from the output, decode them, print them
token_output = generation_output[0]
text_output = tokenizer.decode(token_output)
print("model.generate output: ", text_output)
# Inference is also possible via Transformers' pipeline
from transformers import pipeline
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
**generation_params
)
pipe_output = pipe(prompt_template)[0]['generated_text']
print("pipeline output: ", pipe_output)
Compatibility
The files provided are tested to work with:
- text-generation-webui using
Loader: AutoAWQ
. - vLLM version 0.2.0 and later.
- Hugging Face Text Generation Inference (TGI) version 1.1.0 and later.
- Transformers version 4.35.0 and later.
- AutoAWQ version 0.1.1 and later.
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute
Thanks to the chirper.ai team!
Thanks to Clay from gpus.llm-utils.org!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Aemon Algiz.
Patreon special mentions: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
Original model card: OpenChat's Openchat 3.5 1210
Advancing Open-source Language Models with Mixed-Quality Data
Online Demo | GitHub | Paper | Discord
Table of Contents
Usage
To use this model, we highly recommend installing the OpenChat package by following the installation guide in our repository and using the OpenChat OpenAI-compatible API server by running the serving command from the table below. The server is optimized for high-throughput deployment using vLLM and can run on a consumer GPU with 24GB RAM. To enable tensor parallelism, append --tensor-parallel-size N
to the serving command.
Once started, the server listens at localhost:18888
for requests and is compatible with the OpenAI ChatCompletion API specifications. Please refer to the example request below for reference. Additionally, you can use the OpenChat Web UI for a user-friendly experience.
If you want to deploy the server as an online service, you can use --api-keys sk-KEY1 sk-KEY2 ...
to specify allowed API keys and --disable-log-requests --disable-log-stats --log-file openchat.log
for logging only to a file. For security purposes, we recommend using an HTTPS gateway in front of the server.
Model | Size | Context | Weights | Serving |
---|---|---|---|---|
OpenChat 3.5 1210 | 7B | 8192 | Huggingface | python -m ochat.serving.openai_api_server --model openchat/openchat_3.5_1210 --engine-use-ray --worker-use-ray |
Example request (click to expand)
💡 Default Mode (GPT4 Correct): Best for coding, chat and general tasks
curl http://localhost:18888/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "openchat_3.5",
"messages": [{"role": "user", "content": "You are a large language model named OpenChat. Write a poem to describe yourself"}]
}'
🧮 Mathematical Reasoning Mode: Tailored for solving math problems
curl http://localhost:18888/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "openchat_3.5",
"condition": "Math Correct",
"messages": [{"role": "user", "content": "10.3 − 7988.8133 = "}]
}'
Conversation templates
💡 Default Mode (GPT4 Correct): Best for coding, chat and general tasks
GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:
🧮 Mathematical Reasoning Mode: Tailored for solving math problems
Math Correct User: 10.3 − 7988.8133=<|end_of_turn|>Math Correct Assistant:
⚠️ Notice: Remember to set <|end_of_turn|>
as end of generation token.
The default (GPT4 Correct) template is also available as the integrated tokenizer.chat_template
,
which can be used instead of manually specifying the template:
messages = [
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hi"},
{"role": "user", "content": "How are you today?"}
]
tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
(Experimental) Evaluator / Feedback Capabilities
###Task Description:
An instruction (might include an Input inside it), a response to evaluate, a reference answer that gets a score of 5, and a score rubric representing a evaluation criteria are given.
1. Write a detailed feedback that assess the quality of the response strictly based on the given score rubric, not evaluating in general.
2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score rubric.
3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)"
4. Please do not generate any other opening, closing, and explanations.
###The instruction to evaluate:
{orig_instruction}
###Response to evaluate:
{orig_response}
###Reference Answer (Score 5):
{orig_reference_answer}
###Score Rubrics:
[{orig_criteria}]
Score 1: {orig_score1_description}
Score 2: {orig_score2_description}
Score 3: {orig_score3_description}
Score 4: {orig_score4_description}
Score 5: {orig_score5_description}
###Feedback:
Benchmarks
Model | # Params | Average | MT-Bench | HumanEval | BBH MC | AGIEval | TruthfulQA | MMLU | GSM8K | BBH CoT |
---|---|---|---|---|---|---|---|---|---|---|
OpenChat-3.5-1210 | 7B | 63.8 | 7.76 | 68.9 | 49.5 | 48.0 | 61.8 | 65.3 | 77.3 | 61.8 |
OpenChat-3.5 | 7B | 61.6 | 7.81 | 55.5 | 47.6 | 47.4 | 59.1 | 64.3 | 77.3 | 63.5 |
ChatGPT (March)* | ? | 61.5 | 7.94 | 48.1 | 47.6 | 47.1 | 57.7 | 67.3 | 74.9 | 70.1 |
OpenHermes 2.5 | 7B | 59.3 | 7.54 | 48.2 | 49.4 | 46.5 | 57.5 | 63.8 | 73.5 | 59.9 |
OpenOrca Mistral | 7B | 52.7 | 6.86 | 38.4 | 49.4 | 42.9 | 45.9 | 59.3 | 59.1 | 58.1 |
Zephyr-β^ | 7B | 34.6 | 7.34 | 22.0 | 40.6 | 39.0 | 40.8 | 39.8 | 5.1 | 16.0 |
Mistral | 7B | - | 6.84 | 30.5 | 39.0 | 38.0 | - | 60.1 | 52.2 | - |
Evaluation Details(click to expand)
*: ChatGPT (March) results are from [GPT-4 Technical Report](https://arxiv.org/abs/2303.08774), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), and our evaluation. Please note that ChatGPT is not a fixed baseline and evolves rapidly over time.^: Zephyr-β often fails to follow few-shot CoT instructions, likely because it was aligned with only chat data but not trained on few-shot data.
**: Mistral and Open-source SOTA results are taken from reported results in instruction-tuned model papers and official repositories.
All models are evaluated in chat mode (e.g. with the respective conversation template applied). All zero-shot benchmarks follow the same setting as in the AGIEval paper and Orca paper. CoT tasks use the same configuration as Chain-of-Thought Hub, HumanEval is evaluated with EvalPlus, and MT-bench is run using FastChat. To reproduce our results, follow the instructions in our repository.
HumanEval+
Model | Size | HumanEval+ pass@1 |
---|---|---|
ChatGPT (December 12, 2023) | - | 64.6 |
WizardCoder-Python-34B-V1.0 | 34B | 64.6 |
OpenChat 3.5 (Dec 10) | 7B | 63.4 |
OpenHermes 2.5 | 7B | 41.5 |
OpenChat-3.5-1210 vs. Grok
License | # Param | Average | MMLU | HumanEval | MATH | GSM8k | |
---|---|---|---|---|---|---|---|
OpenChat 3.5 1210 | Apache-2.0 | 7B | 60.1 | 65.3 | 68.9 | 28.9 | 77.3 |
OpenChat 3.5 | Apache-2.0 | 7B | 56.4 | 64.3 | 55.5 | 28.6 | 77.3 |
Grok-0 | Proprietary | 33B | 44.5 | 65.7 | 39.7 | 15.7 | 56.8 |
Grok-1 | Proprietary | ???B | 55.8 | 73 | 63.2 | 23.9 | 62.9 |
*: Grok results are reported by X.AI.
中文评估结果 / Chinese Evaluations
⚠️ Note that this model was not explicitly trained in Chinese (only < 0.1% of the data is in Chinese). 请注意本模型没有针对性训练中文(中文数据占比小于0.1%)。
Multi-Level Multi-Discipline Chinese Evaluation Suite (CEVAL)
Model | Avg | STEM | Social Science | Humanities | Others |
---|---|---|---|---|---|
ChatGPT | 54.4 | 52.9 | 61.8 | 50.9 | 53.6 |
OpenChat | 47.29 | 45.22 | 52.49 | 48.52 | 45.08 |
Massive Multitask Language Understanding in Chinese (CMMLU, 5-shot)
Models | STEM | Humanities | SocialSciences | Other | ChinaSpecific | Avg |
---|---|---|---|---|---|---|
ChatGPT | 47.81 | 55.68 | 56.5 | 62.66 | 50.69 | 55.51 |
OpenChat | 38.7 | 45.99 | 48.32 | 50.23 | 43.27 | 45.85 |
Limitations
Foundation Model Limitations Despite its advanced capabilities, OpenChat is still bound by the limitations inherent in its foundation models. These limitations may impact the model's performance in areas such as:
- Complex reasoning
- Mathematical and arithmetic tasks
- Programming and coding challenges
Hallucination of Non-existent Information OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model.
Safety OpenChat may sometimes generate harmful, hate speech, biased responses, or answer unsafe questions. It's crucial to apply additional AI safety measures in use cases that require safe and moderated responses.
License
Our OpenChat 3.5 code and models are distributed under the Apache License 2.0.
Dataset Details
OpenChat 3.5 was trained with C-RLFT on a collection of publicly available high-quality instruction data, with a custom processing pipeline. We detail some notable subsets included here:
- OpenChat ShareGPT
- Open-Orca with FLAN answers
- Feedback-Collection
- Capybara 1 2 3
- GOAT
- Glaive
- MetaMathQA
- MathInstruct
- OpenAssistant
Citation
@article{wang2023openchat,
title={OpenChat: Advancing Open-source Language Models with Mixed-Quality Data},
author={Wang, Guan and Cheng, Sijie and Zhan, Xianyuan and Li, Xiangang and Song, Sen and Liu, Yang},
journal={arXiv preprint arXiv:2309.11235},
year={2023}
}
Acknowledgments
We extend our heartfelt gratitude to AutoMeta and caesus from Alignment Lab AI, LDJ and Teknium from Nous Research, alpin and TearGosling from Pygmalion AI for their substantial contributions to data collection and model training.
Special thanks go to Changling Liu from GPT Desk Pte. Ltd., Qiying Yu at Tsinghua University, Baochang Ma, and Hao Wan from 01.AI company for their generous provision of resources. We are also deeply grateful to Jianxiong Li and Peng Li at Tsinghua University for their insightful discussions.
Furthermore, we appreciate the developers behind the following projects for their significant contributions to our research: Mistral, Chain-of-Thought Hub, Llama 2, Self-Instruct, FastChat (Vicuna), Alpaca, and StarCoder. Their work has been instrumental in driving our research forward.
- Downloads last month
- 20